No Image

Как вычислить молярную массу металла

СОДЕРЖАНИЕ
1 155 просмотров
16 декабря 2019

Теоретические основы. Согласно закону эквивалентов, вещества реагируют друг с другом в количествах, пропорциональных их эквивалентам.

Фактор эквивалентности (химический эквивалент), fЭ это количество вещества (моль), которое реагирует с 1 молем атомов водорода или замещает это количество в химических соединениях.

Молярная масса эквивалента, МЭ — это масса одного эквивалента вещества (г/моль).

МЭ = fЭ М (М — молярная масса вещества)

Вычисление молярных масс эквивалентов проводятся с использованием следующих формул:

а) для простых веществ и элементов в соединениях

МЭ = М / В (В — валентность элемента)

б) для кислот или оснований МЭ = М / n(n — основность кислоты или кислотность основания, т.е. число ионов Н + или ОН — )

в) для оксидов и солей МЭ = М / p q( p — число атомов металла; q — валентность металла)

Число эквивалентов веществаn = m / MЭ.

Для веществ, находящихся в газообразном состоянии

n = V 0 / VЭ 0 (V 0 — объем газа при н.у.)

VЭ 0 — молярный объем эквивалента газа — объем, занимаемый одним эквивалентом газа при нормальных условиях.

Способы записи закона эквивалентов:

Цель работы. Экспериментально определить объем водорода, выделившегося в процессе реакции магния с соляной кислотой. Зная эквивалентный объем водорода, вычислить молярную массу эквивалента магния, используя закон эквивалентов.

Порядок работы.

1. Опыты по определению объемов газов, выделяющихся в процессе реакции, проводятся в специальных приборах, называемых эвдиометрами. Стандартный эвдиометр состоит из двух соединенных резиновым шлангом трубок, одна из которых градуирована (бюретка) и соединена посредством резиновой пробки и шланга с пробиркой. Неградуированная трубка называется уравнительным сосудом. Выделяющийся водород из склянки Оствальда (или пробирки) поступает в верхнюю часть градуированного сосуда и вытесняет из него воду. Разность уровней воды в градуированном сосуде до и после реакции равна объему выделившегося водорода. Открытый неградуированный сосуд называется уравнительным.

2. Проверьте герметичность прибора: присоединив пробирку к эвдиометру, опустите уравнительный сосуд на 20-25 см ниже его первоначального положения; если прибор герметичен, уровень воды в градуированном сосуде, несколько понизившись в начальный момент, в дальнейшем остается постоянным.

3. Отсоединив пробирку, установите уравнительный сосуд так, чтобы уровень воды в градуированном сосуде совпал с верхней меткой шкалы — V1 (уровень отсчитывается по нижнему мениску жидкости).

4. Взвесьте на технохимических весах 0.12-0.15 г магниевой стружки (m) и заверните металл в бумагу, на которой проводилось взвешивание, таким образом, чтобы получившийся сверток мог свободно перемещаться в пробирке и был открыт с одного конца для обеспечения доступа кислоты к магнию.

5. Отмерьте мерным цилиндром 10 мл соляной кислоты и залейте ее в пробирку.

6. Держа пробирку наклонно, поместите в верхнюю часть ее сверток с магнием и присоедините к эвдиометру.

7. Стряхните сверток с магнием в кислоту. В процессе химической реакции следите за тем, чтобы весь магний прореагировал с соляной кислотой.

8. После окончания реакции охладите пробирку до комнатной температуры.

9. Опустите уравнительный сосуд до приведения воды в нем к одному уровню с водой в градуированном сосуде. Снимите показание уровня воды — V2.

10. Запишите температуру ( t ) и давление ( Р ) в лаборатории. По таблице зависимости давления пара от температуры (приложение 1) определите давление насыщенного водяного пара ( h ).

11. Проведите расчет молярной массы эквивалента магния. Имейте в виду, что измеренный при давлении Р и температуре t объем выделившегося водорода (V2 — V1 ) не может быть непосредственно применен к расчетам молярной массы эквивалента металла. Необходимые расчетные формулы приводятся в форме лабораторного отчета.

12. Рассчитайте по формуле теоретическое значение молярной массы эквивалента магния.

13. Рассчитайте абсолютную ( А ) и относительную ( К ) ошибки опыта.

14. Сделайте выводы о точности Ваших измерений и возможных причинах ошибки.

15. Составьте лабораторный отчет по прилагаемой форме.

Форма лабораторного отчета.

1. Название лабораторной работы.

2. Краткое описание, цель работы.

3. Уравнение реакции.

4. Экспериментальные данные:

а) масса металла m = .

б) уровень воды в бюретке до реакции V1 = .

в) уровень воды в бюретке после реакции V2= .

г) объем выделившегося водорода V = V1 — V2 = .

д) температура воздуха в лаборатории t = .

е) атмосферное давление Р = .

ж) давление насыщенного водяного пара h = .

а) объем выделившегося водорода, приведенный к н.у. :

Vo = = .

б) молярная масса эквивалента металла

МЭ (эксп.) = = .

в) теоретическое значение молярной массы эквивалента

магния: МЭ (теор.) = М (Mg) / B = .

г) абсолютная ошибка эксперимента

д) относительная ошибка эксперимента

K =

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8828 — | 7537 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Цель работы: усвоить понятия химического эквивалента, молярной массы эквивалента, закона эквивалентов; ознакомиться с экспериментальным определением молярной массы эквивалента металла методом вытеснения водорода из кислоты.

Теоретическая часть

Известно, что количество вещества определяется числом структурных единиц (атомов, молекул, ионов) этого вещества и выражается в молях.

Моль ()– это единица количества вещества, содержащая столько же структурных единиц данного вещества, сколько атомов содержится в 0,012 кг углерода, состоящего только из изотопа 12 С.

Молярная масса (М) вещества представляет собой отношение массы вещества (m) к его количеству (), а значение молярной массы численно совпадает с относительной молекулярной массой вещества или относительной атомной массой элемента, но измеряется в г/моль.

Эквивалентом вещества (э), вступающего в какую-либо реакцию, называют такое его количество, которое приходится на единицу валентности соответствующего элемента при образовании им соединения.

Химический эквивалент и молярная масса эквивалента представляют собой важнейшие характеристики элементов, простых и сложных веществ, учитывая то, что согласно закону эквивалентов все вещества взаимодействуют между собой в эквивалентных количествах.

Единицей химического эквивалента (э), так же как и количества вещества является моль, а молярная масса эквивалента (Мэ), соответственно измеряется в г/моль.

Так, водород в своих соединениях, как правило, одновалентен, и его эквивалент равен 1 моль Н или 1/2 моль Н2, а молярная масса его эквивалента Мэ(Н) = 1 г/моль.

Кислород в своих соединениях двухвалентен, тогда его эквивалент равен 1/2 моль О или 1/4 моль О2, а молярная масса его эквивалента Мэ(О) = 8 г/моль.

Железо в своих соединениях может быть и двух-, и трехвалентным, тогда его эквивалент в первом случае будет равен 1/2 моль Fe, а молярная масса эквивалента Мэ(Fe) = 28 г/моль. Эквивалент железа во втором случае будет равен 1/3 моль Fe, а молярная масса эквивалента Мэ(Fe) = 18,6 г/моль. Следовательно, молярную массу эквивалента простого вещества можно рассчитать по формуле:

, (1)

где М(эл-та) – молярная масса элемента; В(эл-та) – валентность элемента.

Молярные массы эквивалентов сложных веществ (оксидов, кислот, оснований, солей) рассчитываются несколько иначе.

Молярная масса эквивалента оксида рассчитывается отношением молярной массы оксида к произведению числа атомов элемента на его валентность.

,

где М(оксида) – молярная масса оксида; n(эл-та) – число атомов элемента; В(эл-та) – валентность элемента.

Для оксида железа (Ш), например, молярная масса его будет равна:

Молярная масса эквивалента кислотырассчитывается отношением молярной массы кислоты к числу атомов водорода в кислоте, способных замещаться в химических реакциях.

,

где М (кислоты) – молярная масса кислоты; n (H) – число замещающихся в химической реакции атомов водорода.

Для серной кислоты (H2SO4), например, молярная масса эквивалента будет равна:

Молярная масса эквивалента основания рассчитывается отношением молярной массы основания к числу гидроксогрупп.

,

где М (основания) – молярная масса основания; n (OH) – число гидроксогрупп.

Для гидроксида кальция (Ca(OH)2), например, молярная масса эквивалента будет равна:

Молярная масса эквивалента соли рассчитывается отношением молярной массы соли к произведению числа атомов металла на их валентность.

,

где М (соли) – молярная масса соли; n (Ме) – число атомов металла; В (Ме) – валентность металла.

Для сульфата натрия (Na2SO4), например, молярная масса эквивалента будет равна:

Из закона эквивалентов следует, что массы вступающих и образующихся в результате реакции веществ прямопропорциональны молярным массам их эквивалентов:

, (2)

где m(1) и Мэ(1) – масса и молярная масса эквивалента первого вещества; m(2) и Мэ(2) – масса и молярная масса эквивалента второго вещества.

Из следствия из закона Авогадро вытекает понятие молярный объем — объем, который занимает 1 моль любого газа при нормальных условиях, т.е. при р = 10 5 Па (1 атм или 760 мм рт. ст.) и Т = 273 К ( 0 о С). Значение этого объема равно 22,4 л/моль (22400 мл/моль). Отсюда можно вывести понятие и молярного объема эквивалента газа (или эквивалентного объема) – объема, занимаемого при нормальных условиях одним эквивалентом (одной молярной массой эквивалента) газа.

Известно, что эквивалент водорода равен 1/2 моль Н2, тогда молярный объем эквивалента водорода Vэ(Н2) = 11,2 л/моль; соответственно Vэ(О2) = 5,6 л/моль, т.к. эквивалент кислорода равен 1/4 моль О2.

Если же в реакции участвуют газы и известны их объемы, то соотношение (2) можно представить следующим образом:

(3)

где m(1) и Мэ(1) – масса и молярная масса эквивалента первого вещества; V(2) и (2) – объем и молярный объем эквивалента второго вещества.

Следует иметь ввиду, что объемы, входящие в соотношение (3), нужно приводить к нормальным условиям по формуле объединенного закона Гей-Люссака – Бойля –Мариотта:

, откуда(4)

где р, V, Т – давление, объем и температура газа при условиях опыта; ро, Vо, То – давление, объем и температура газа при нормальных условиях.

Известны методы экспериментального определения молярных масс эквивалентов: 1) метод прямого определения – молярную массу эквивалента определяют по данным прямого синтеза кислородного или водородного соединения данного элемента; 2) аналитический метод – производится точный анализ соединения данного элемента с любым другим, молярная масса эквивалента которого известна; 3) метод вытеснения водорода — используется для определения молярной массы эквивалента тех металлов, которые способны вытеснить водород из разбавленных кислот и щелочей; 4) электрохимический метод – определяется масса металла, осаждающегося на электроде при электролизе раствора соли этого металла. Молярная масса эквивалента рассчитывается по закону Фарадея: при прохождении через раствор или расплав электролита 965000 Кулонов электричества на электродах выделяется по одному эквиваленту вещества.

Сущность экспериментального определения молярной массы эквивалента металла заключается в определении объема водорода (приведенного к нормальным условиям), вытесняемого из кислоты навеской металла, взятой на аналитических весах.

Произведением молярной массы эквивалента металла на его валентность определяют молярную массу атома металла.

По молярной массе атома металла и его валентности находят местоположение металла в периодической системе элементов Д.И.Менделеева, т.е. его название.

По указанию преподавателя студент взвешивает на аналитических весах навеску металла известной валентности.

Прибор для определения молярной массы эквивалента изображен на рисунке.

еред началом работы прибор следует проверить на герметичность. Для этого отсоединяют пробирку А от прибора, через воронку С заливают водой таким образом, чтобы уровень воды в бюретке В установился на нулевом делении или несколько ниже; избыток воды удалить. Присоединяют пробирку А на место. Затем поднимают воронку C вверх и следят за уровнем воды в бюретке В. Если уровень в последней непрерывно повышается, то это означает, что прибор негерметичен и следует проверить все резиновые соединения. Если же прибор герметичен, то повышение уровня воды в бюретке В произойдет незначительно только в первый момент, а потом он будет оставаться неизменным.

Убедившись в герметичности прибора, отсоединяют пробирку А от прибора и, записав начальный уровень воды в бюретке В, наливают в пробирку А 1/4 ее объема соляной кислоты, приготовленной для определения молярной массы эквивалента металла соответствующей валентности.

Держа пробирку А в положении, близком к горизонтальному, помещают на сухое место у отверстия пробирки взвешенный металл и в таком положении соединяют пробирку А с бюреткой В, следя за тем, чтобы металл не упал в кислоту.

Убедившись вторично в герметичности прибора путем поднятия воронки С вверх, стряхивают металл в кислоту и наблюдают за ходом реакции.

По окончании реакции (прекращение выделения пузырьков водорода), устанавливают уровень воды в бюретке В и воронке С на одной высоте, перемещая кольцо К с воронкой С вниз по штативу, и записывают уровень воды в бюретке В после окончания опыта. Шкала бюретки В проградуирована в миллилитрах (мл).

С помощью барометра определяют величину атмосферного давления ( ратм ), термометра – температуру ( t ) воздуха в помещении (соответственно и температуру воды в приборе) в момент проведения опыта.

С помощью таблицы 1 определяют давление водяного пара ( рН2Опар ), соответствующего измеренной температуре опыта, в мм рт.ст.

Зависимость давления водяного пара от температуры

Методические указания

Закон эквивалентов открыт в конце 18 века: вещества взаимодействуют между собой в количествах, пропорциональных их химическим эквивалентам. Для решения задач удобно пользоваться другой формулировкой: массы (объемы) реагирующих веществ пропорциональны их эквивалентным массам (объемам)

— количество эквивалентов — количество эквивалентов

Химическим эквивалентом элемента (молярной массой эквивалента) называется такое его количество (моль), которое соответствует 1 моль атомов водорода (соединятся с 1 моль атомов водорода или замещает то же количество атомов водорода в химических реакциях). Химический эквивалент не является постоянной величиной, он зависит от валентности (степени окисления) элемента.

Молярная масса эквивалента (м э ) – это масса одного эквивалента (грамм/моль*экв, килограмм/моль*экв). Молярная масса эквивалента равна частному от деления молярной массы его атомов (А) на валентность (степень окисления) элемента (В) в данном соединении:

Например, молярная масса эквивалента серы в SO2 и SO3 соответственно равны 32/4 = 8 г/моль и 32/6 = 5.33 г/моль.

Эквивалентным объемом (л/моль, м 3 /моль) называется объем, занимаемый при данных условиях (Р, Т) 1 эквивалентов вещества. Значения эквивалентного объема вещества, находящегося в газообразном состоянии, можно найти, зная, что в молярном объеме любого газа, состоящего из одноатомных молекул, содержится 2 моля атомов и т.д. Так в 22.4 л Н2 содержится при нормальных условиях (Р0=760 мм рт.ст.=101325 Па; Т0 = 273 К) 2 моля атомов водорода. Поскольку эквивалент водорода равен 1 моль, то в 22.4 л Н2 содержится 2 эквивалента водорода; значит, эквивалентный объем водорода равен

22.4/2 = 11.2 л/моль = 11.2 * 10 -3 м 3 /моль.

Пример № 1.Определить эквивалента и эквивалентные массы элементов в соединениях HF, H2O, NH3, CH4.

Решение. В указанных соединениях с 1 моль атомов водорода соединяется 1 моль атомов фтора, 1/2 моль атомов кислорода, 1/3 моль атомов азота, 1/4 моль атомов углерода.

Следовательно, фактор эквивалентности фтора, кислорода, азота и углерода соответственно равны 1 моль, 1/2 моль, 1/3 моль, 1/4 моль. Исходя из молярных масс атомов этих элементов, определяем, молярную масса эквивалента фтора равна 19 г/моль, кислорода – 16 * 1/2 = 8 г/моль, азота – 14 * 1/3=4.67 г/моль, углерода – 12 * 1/4=3 г/моль.

Для определения молярной массы эквивалента не обязательно исходить из его соединения с водородом. Молярную массу эквивалента можно вычислить по составу соединения данного элемента с любым другим, молярная масса эквивалента которого известна.

Пример № 2.Вычислить молярную массу эквивалента металла, зная, что его хлорид содержит 79.78% хлора. Молярная масса эквивалента хлора равна 35.45 г/моль•экв.

Решение. Содержание металла в этом соединении составляет: 100 – 79.78=20.22%. Согласно закону эквивалентов: количество эквивалентов металла равно количеству эквивалентов хлора mме/ М э ме = mСl/ М э Сl, т.е.

20.22/ М э ме = 79,78/35.45 => М э ме=20.22•35.45/79.78=8.98 г/моль. Молярная масса эквивалента металла равена 8.99 г/моль.

Молярные массы эквивалентов химических соединений так же как молярные массы эквивалентов элементов могут иметь переменные значения. Это определяется характером превращения веществ.

Молярные массы эквивалентов оксидов в реакциях обмена:

где Моксида – молярная масса оксида; n – число атомов элемента;

В – валентность (степень окисления) элемента.

Пример № 3.Определить эквивалентные массы оксидов железа.

Решение. Железо образует три оксида FeO, Fe2O3, FeO3.

Молярные массы эквивалентов кислот в реакциях обмена:

где Мкислоты – молярная масса кислоты; nн – число атомов водорода, содержащихся в молекуле кислоты, способных замещаться на металл.

Пример№4.Определить молярную массу эквивалента и фактор эквивалентности H3PO4 в следующих реакциях:

Решение. Молярная масса H3PO4 равна 98 г/моль.

В реакции (1) количество nн атомов водорода, заместившихся на металл, равно 3, следовательно эквивалент Н3Р04 равен 1/3 моль, а эквивалентная масса ЭН3Р04 = 98/3 = 32.7 (г/моль).

В реакции (2) пн-2, следовательно, эквивалент Н3Р04 равен 1/2 моль, а эквивалентная масса Э = 98/2 = 49 (г/моль).

В реакции (3) пн= 1, следовательно, эквивалент Н3Р04 равен 1 моль, а эквивалентная масса Э = 98/1 = 98 (г/моль).

Молярные массы эквивалентов оснований в реакциях обмена:

где Mоснования – молярная масса основания; nон – валентность металла ли число гидроксильных групп в молекуле основания, способных заместиться на кислотный остаток.

Пример № 5.Определить молярную массу эквивалента и фактор эквивалентности Сu(ОН)2 в следующих реакциях:

Решение. Молярная масса Сu(ОН)2 равна 97.5 г/моль. В реакции (1) количество гидроксильных групп nон, заместившихся на кислотный остаток, равно 2, следовательно фактор эквивалентности Сu(ОН)2 равен 1/2 моль, а молярная масса эквивалента М э Сu(ОН)2 = 97.5/2 = 48.75 (г/моль).

В реакции (2) количество гидроксильных групп nон, заместившихся на кислотный остаток, равно 1, следовательно эквивалент Сu(ОН)2 равен 1 моль, а эквивалентная масса ЭСu(ОН)2 = 97.5/1 = 97.5(г/моль).

Эквиваленты солей в реакциях обмена:

где Мсоли – молярная масса соли; число атомов металла; валентность (степень окисления) металла.

Пример № 6.Определить молярную массу эквивалента сульфата алюминия.

Окислительно-восстановительные эквиваленты определяются путём деления молярной массы на число электронов, идущих на восстановление или окисление

где Мо(в) – молярная масса окислителя (восстановителя); nе – число электронов, идущих на окисление (восстановление).

Пример № 7.Чему равна молярная масса эквивалентна перманганата калия как окислителя, если это вещество в процессе реакции восстанавливается: 1) до сульфата марганца; 2) до диоксида марганца; 3) манганата калия?

Решение. 1) При восстановлении KMnO4 до MnSO4 степень окисления марганца понизится с +7 до +2, т.е. число электронов, идущих на восстановление, равно 5. Следовательно,

2) При восстановлении KMnO4 до MnO2 степень окисления марганца понизится с +7 до +4, т.е. число электронов, идущих на восстановление, равно 3. Следовательно,

3) При восстановлении KMnO4 до K2MnO4 степень окисления марганца понизится с +7 до +6, т.е. число электронов, идущих на восстановление, равно 1. Следовательно,

Выполнение работы

Определение эквивалентной массы металла

Задание: Определить экспериментально эквивалентную массу металла (магния, цинка – по заданию преподавателя) по количеству выделившегося водорода в реакции взаимодействия металла с соляной кислотой

Вычислить ее теоретическое значение и относительную ошибку эксперимента.

Приборы и реактивы.Прибор для определения эквивалента металла (рис.1.1.). Аналитические весы. Термометр. Барометр. Мерный цилиндр на 25-50 мл. Стаканчик химический. Фильтровальная бумага. Навеска металла (химически чистого) около 0.04 – 0.05 г. Соляная кислота (10мас.% раствор).

Ход определения.

1. Налить через воронку в бюретку воду до нулевого деления. Плотно закрыть отверстие бюретки пробкой со стеклянной трубкой. В одну часть сосуда Ландольта поместить навеску цинка. Другую часть сосуда через воронку наполнить на две трети объема разбавленной (10мас.%) соляной кислотой. Присоединить сосуд к свободному концу трубки, соединенной с бюреткой.

2. Проверить герметичность прибора. Для этого опустить или поднять воронку вместе с кольцом на 10-15 см. Если уровень воды в бюретке не меняется, то прибор герметичен и можно приступать к опыту. Если уровень воды в бюретке меняется, то необходимо плотнее закрыть пробками бюретку и сосуд, снова проверить и т.д. Уровень воды V1 в бюретке до начала опыта записать с точностью до 0.1 мл.

3. Привести в контакт кислоту и металл, осторожно наклоняя сосуд Ландольта. После полного растворения металла выждать 5-7мин., чтобы содержимое сосуда охладилось. Затем установить на одной высоте уровень воды в бюретке и воронке. При этом внутри прибора создается давление, равное давлению наружного воздуха. Записать уровень воды V2 в бюретке после опыта.

4. Результаты эксперимента внести в журнал по форме:

Уровень воды в бюретке:

Объем водорода при нормальных условиях (н.у.) V0, мл………………

Температура опыта T = 273+t, K…………………………………………

Барометрическое давление P, мм рт.ст…………………………………..

Давление насыщенного водяного пара h, мм рт.ст. при температуре опыта……………………………………………………

Экспериментальная эквивалентная масса металла М э эксп, г/моль……….

Теоретическая эквивалентная масса металла М э теор, г/моль……………..

Относительная ошибка e, %.

Рис. 1.1.Прибор для определения эквивалента металла:

1) Бюретка для измерения объёма выделившегося водорода;

2) Сосуд Ландольта для проведения реакции;

3) Каучуковая трубка;

1. Подсчитать VН2, вытесненного водорода по разности уровней в бюретке:

2. Привести это объем к нормальным условиям:

Величину h посмотреть в справочнике. Поправку h вводят вследствие того, что общее давление на воду является суммой пропорциональных давлений водорода и воды.

3. Вычислить экспериментальную массу металла:

где — эквивалентный объем водорода, равный 11200 мл/моль.

4. Сравнить найденную экспериментальную эквивалентную массу металла с теоретически посчитанным Этеор = А/В, вычислив в процентах ошибку опыта:

3. Контрольные вопросы и задачи

1. Вычислить молярные массы эквивалентов следующих элементов:

а) магния, если известно, что при нагревании одного моль его в токе кислорода, масса увеличилась на 66.7%. Ответ: 11.9 г/моль;

б) олова, если при нагревании 0.9185 г его в токе кислорода образуется 1.166 г оксида олова. Ответ: 29.68 г/моль.

2. Определить молярную массу эквивалента элемента, если при восстановлении 1.3 г оксида этого элемента алюминием получилось 1.02г оксида алюминия, содержащего 47% кислорода. Ответ: 13.66г/моль.

3. Написать формулу соединения сурьмы с серой, если известно, что молярная масса атомов сурьмы равна 121.8 г/моль, эквивалентная масса ее — 40.6 г/моль, молярная масса атомов серы равна 32 г/моль, эквивалентная масса — 16 г/моль.

4. Определить молярные массы эквивалентов и факторы эквивалентности кислот и оснований в следующих реакциях:

5. Вычислить молярную массу эквивалента и фактор эквивалентности хромата калия К2СrO4 как окислителя, если К2СrO4 восстанавливается до КСrO2.

6. Определить молярную массу эквивалента металла, если 0.34*10 -3 кг его вытесняют из кислоты 56.94*10 -6 м 3 водорода при температуре 0°С и давлении 94643 Па. Ответ: 67.8 г/моль.

7. Определить молярную массу эквивалента металла в следующих соединениях:

8. Чему равен эквивалентный объем кислорода?

Комментировать
1 155 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев