No Image

Как провести сечение в кубе

СОДЕРЖАНИЕ
3 просмотров
16 декабря 2019

Знание — сила. Познавательная информация

Сечение куба плоскостью

Задачи на построение сечений куба плоскостью, как правило, проще чем, например, задачи на сечения пирамиды.

Провести прямую можем через две точки, если они лежат в одной плоскости. При построении сечений куба возможен еще один вариант построения следа секущей плоскости. Поскольку две параллельные плоскости третья плоскость пересекает по параллельным прямым, то, если в одной из граней уже построена прямая, а в другой есть точка, через которую проходит сечение, то можем провести через эту точку прямую, параллельную данной.

Рассмотрим на конкретных примерах, как построить сечения куба плоскостью.

1) Построить сечение куба плоскостью, проходящей через точки A, C и M.

Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1). Треугольник ACM — искомое сечение.

2) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.

Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).

Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).

Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.

Пятиугольник MNLPS — искомое сечение.

3) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).

Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.

Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую. Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).

Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.

Шестиугольник MNHEPF — искомое сечение.

Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.

Работа с прямой PE дает то же сечение MNHEPF.

4) Построить сечение куба плоскостью, проходящей через точку M, N, P.

Здесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

Продолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости ( ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.

Читайте также:  Как обработать голос чтобы он приятнее звучал

Можно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.

Определение

Сечение — это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

Замечание

Для построения сечений различных пространственных фигур необходимо помнить основные определения и теоремы о параллельности и перпендикулярности прямых и плоскостей, а также свойства пространственных фигур. Напомним основные факты.
Для более подробного изучения рекомендуется ознакомиться с темами “Введение в стереометрию. Параллельность” и “Перпендикулярность. Углы и расстояния в пространстве”.

Важные определения

1. Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

2. Две прямые в пространстве скрещиваются, если через них нельзя провести плоскость.

3. Прямая и плоскость параллельны, если они не имеют общих точек.

4. Две плоскости параллельны, если они не имеют общих точек.

5. Две прямые в пространстве называются перпендикулярными, если угол между ними равен (90^circ) .

6. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

7. Две плоскости называются перпендикулярными, если угол между ними равен (90^circ) .

Важные аксиомы

1. Через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

2. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

3. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Важные теоремы

1. Если прямая (a) , не лежащая в плоскости (pi) , параллельна некоторой прямой (p) , лежащей в плоскости (pi) , то она параллельна данной плоскости.

2. Пусть прямая (p) параллельна плоскости (mu) . Если плоскость (pi) проходит через прямую (p) и пересекает плоскость (mu) , то линия пересечения плоскостей (pi) и (mu) — прямая (m) — параллельна прямой (p) .

3. Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

4. Если две параллельные плоскости (alpha) и (eta) пересечены третьей плоскостью (gamma) , то линии пересечения плоскостей также параллельны:

[alphaparallel eta, alphacap gamma=a, etacapgamma=b Longrightarrow aparallel b]

5. Пусть прямая (l) лежит в плоскости (lambda) . Если прямая (s) пересекает плоскость (lambda) в точке (S) , не лежащей на прямой (l) , то прямые (l) и (s) скрещиваются.

6. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.

7. Теорема о трех перпендикулярах.

Пусть (AH) – перпендикуляр к плоскости (eta) . Пусть (AB, BH) – наклонная и ее проекция на плоскость (eta) . Тогда прямая (x) в плоскости (eta) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.

8. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.

Замечание

Еще один важный факт, часто использующийся для построения сечений:

для того, чтобы найти точку пересечения прямой и плоскости, достаточно найти точку пересечения данной прямой и ее проекции на эту плоскость.

Для этого из двух произвольных точек (A) и (B) прямой (a) проведем перпендикуляры на плоскость (mu) – (AA’) и (BB’) (точки (A’, B’) называются проекциями точек (A,B) на плоскость). Тогда прямая (A’B’) – проекция прямой (a) на плоскость (mu) . Точка (M=acap A’B’) и есть точка пересечения прямой (a) и плоскости (mu) .

Причем заметим, что все точки (A, B, A’, B’, M) лежат в одной плоскости.

Пример 1.

Дан куб (ABCDA’B’C’D’) . (A’P=dfrac 14AA’, KC=dfrac15 CC’) . Найдите точку пересечения прямой (PK) и плоскости (ABC) .

Решение

1) Т.к. ребра куба (AA’, CC’) перпендикулярны ((ABC)) , то точки (A) и (C) — проекции точек (P) и (K) . Тогда прямая (AC) – проекция прямой (PK) на плоскость (ABC) . Продлим отрезки (PK) и (AC) за точки (K) и (C) соответственно и получим точку пересечения прямых – точку (E) .

2) Найдем отношение (AC:EC) . ( riangle PAEsim riangle KCE) по двум углам ( (angle A=angle C=90^circ, angle E) – общий), значит, [dfrac=dfrac]

Если обозначить ребро куба за (a) , то (PA=dfrac34a, KC=dfrac15a, AC=asqrt2) . Тогда:

Пример 2.

Дана правильная треугольная пирамида (DABC) с основанием (ABC) , высота которой равна стороне основания. Пусть точка (M) делит боковое ребро пирамиды в отношении (1:4) , считая от вершины пирамиды, а (N) – высоту пирамиды в отношении (1:2) , считая от вершины пирамиды. Найдите точку пересечения прямой (MN) с плоскостью (ABC) .

Читайте также:  Как получить промокод тануки на день рождения

Решение

1) Пусть (DM:MA=1:4, DN:NO=1:2) (см. рисунок). Т.к. пирамида правильная, то высота падает в точку (O) пересечения медиан основания. Найдем проекцию прямой (MN) на плоскость (ABC) . Т.к. (DOperp (ABC)) , то и (NOperp (ABC)) . Значит, (O) – точка, принадлежащая этой проекции. Найдем вторую точку. Опустим перпендикуляр (MQ) из точки (M) на плоскость (ABC) . Точка (Q) будет лежать на медиане (AK) .
Действительно, т.к. (MQ) и (NO) перпендикулярны ((ABC)) , то они параллельны (значит, лежат в одной плоскости). Следовательно, т.к. точки (M, N, O) лежат в одной плоскости (ADK) , то и точка (Q) будет лежать в этой плоскости. Но еще (по построению) точка (Q) должна лежать в плоскости (ABC) , следовательно, она лежит на линии пересечения этих плоскостей, а это – (AK) .

Значит, прямая (AK) и есть проекция прямой (MN) на плоскость (ABC) . (L) – точка пересечения этих прямых.

2) Заметим, что для того, чтобы правильно нарисовать чертеж, необходимо найти точное положение точки (L) (например, на нашем чертеже точка (L) лежит вне отрезка (OK) , хотя она могла бы лежать и внутри него; а как правильно?).

Т.к. по условию сторона основания равна высоте пирамиды, то обозначим (AB=DO=a) . Тогда медиана (AK=dfrac<sqrt3>2a) . Значит, (OK=dfrac13AK=dfrac 1<2sqrt3>a) . Найдем длину отрезка (OL) (тогда мы сможем понять, внутри или вне отрезка (OK) находится точка (L) : если (OL>OK) – то вне, иначе – внутри).

а) ( riangle AMQsim riangle ADO) по двум углам ( (angle Q=angle O=90^circ, angle A) – общий). Значит,

[dfrac=dfrac=dfrac=dfrac 45 Rightarrow MQ=dfrac 45a, AQ=dfrac 45cdot dfrac 1<sqrt3>a]

Значит, (QK=dfrac<sqrt3>2a-dfrac 45cdot dfrac 1<sqrt3>a=dfrac7<10sqrt3>a) .

б) Обозначим (KL=x) .
( riangle LMQsim riangle LNO) по двум углам ( (angle Q=angle O=90^circ, angle L) – общий). Значит,

Следовательно, (OL>OK) , значит, точка (L) действительно лежит вне отрезка (AK) .

Замечание

Не стоит пугаться, если при решении подобной задачи у вас получится, что длина отрезка отрицательная. Если бы в условиях предыдущей задачи мы получили, что (x) – отрицательный, это как раз значило бы, что мы неверно выбрали положение точки (L) (то есть, что она находится внутри отрезка (AK) ).

Пример 3

Дана правильная четырехугольная пирамида (SABCD) . Найдите сечение пирамиды плоскостью (alpha) , проходящей через точку (C) и середину ребра (SA) и параллельной прямой (BD) .

Решение

1) Обозначим середину ребра (SA) за (M) . Т.к. пирамида правильная, то высота (SH) пирамиды падает в точку пересечения диагоналей основания. Рассмотрим плоскость (SAC) . Отрезки (CM) и (SH) лежат в этой плоскости, пусть они пересекаются в точке (O) .

Для того, чтобы плоскость (alpha) была параллельна прямой (BD) , она должна содержать некоторую прямую, параллельную (BD) . Точка (O) находится вместе с прямой (BD) в одной плоскости – в плоскости (BSD) . Проведем в этой плоскости через точку (O) прямую (KPparallel BD) ( (Kin SB, Pin SD) ). Тогда, соединив точки (C, P, M, K) , получим сечение пирамиды плоскостью (alpha) .

2) Найдем отношение, в котором делят точки (K) и (P) ребра (SB) и (SD) . Таким образом мы полностью определим построенное сечение.

Заметим, что так как (KPparallel BD) , то по теореме Фалеса (dfrac=dfrac) . Но (SB=SD) , значит и (SK=SP) . Таким образом, можно найти только (SP:PD) .

Рассмотрим ( riangle ASC) . (CM, SH) – медианы в этом треугольнике, следовательно, точкой пересечения делятся в отношении (2:1) , считая от вершины, то есть (SO:OH=2:1) .

Теперь по теореме Фалеса из ( riangle BSD) : (dfrac=dfrac=dfrac21) .

3) Заметим, что по теореме о трех перпендикулярах (COperp BD) как наклонная ( (OH) – перпендикуляр на плоскость (ABC) , (CHperp BD) – проекция). Значит, (COperp KP) . Таким образом, сечением является четырехугольник (CPMK) , диагонали которого взаимно перпендикулярны.

Пример 4

Дана прямоугольная пирамида (DABC) с ребром (DB) , перпендикулярным плоскости (ABC) . В основании лежит прямоугольный треугольник с (angle B=90^circ) , причем (AB=DB=CB) . Проведите через прямую (AB) плоскость, перпендикулярную грани (DAC) , и найдите сечение пирамиды этой плоскостью.

Решение

1) Плоскость (alpha) будет перпендикулярна грани (DAC) , если она будет содержать прямую, перпендикулярную (DAC) . Проведем из точки (B) перпендикуляр на плоскость (DAC) — (BH) , (Hin DAC) .

Проведем вспомогательные (BK) – медиану в ( riangle ABC) и (DK) – медиану в ( riangle DAC) .
Т.к. (AB=BC) , то ( riangle ABC) – равнобедренный, значит, (BK) – высота, то есть (BKperp AC) .
Т.к. (AB=DB=CB) и (angle ABD=angle CBD=90^circ) , то ( riangle ABD= riangle CBD) , следовательно, (AD=CD) , следовательно, ( riangle DAC) – тоже равнобедренный и (DKperp AC) .

Применим теорему о трех перпендикулярах: (BH) – перпендикуляр на (DAC) ; наклонная (BKperp AC) , значит и проекция (HKperp AC) . Но мы уже определили, что (DKperp AC) . Таким образом, точка (H) лежит на отрезке (DK) .

Соединив точки (A) и (H) , получим отрезок (AN) , по которому плоскость (alpha) пересекается с гранью (DAC) . Тогда ( riangle ABN) – искомое сечение пирамиды плоскостью (alpha) .

2) Определим точное положение точки (N) на ребре (DC) .

Читайте также:  Как поменять linux на windows 10

Обозначим (AB=CB=DB=x) . Тогда (BK) , как медиана, опущенная из вершины прямого угла в ( riangle ABC) , равна (frac12 AC) , следовательно, (BK=frac12 cdot sqrt2 x) .

Рассмотрим ( riangle BKD) . Найдем отношение (DH:HK) .

Заметим, что т.к. (BHperp (DAC)) , то (BH) перпендикулярно любой прямой из этой плоскости, значит, (BH) – высота в ( riangle DBK) . Тогда ( riangle DBHsim riangle DBK) , следовательно

[dfrac=dfrac Rightarrow DH=dfrac<sqrt6>3x Rightarrow HK=dfrac<sqrt6>6x Rightarrow DH:HK=2:1]

Рассмотрим теперь ( riangle ADC) . Медианы треугольника точной пересечения делятся в отношении (2:1) , считая от вершины. Значит, (H) – точка пересечения медиан в ( riangle ADC) (т.к. (DK) – медиана). То есть (AN) – тоже медиана, значит, (DN=NC) .

Построение сечения куба по трем точкам.

Скачать:

Вложение Размер
zagadka_tryokh_tochek.pptx 361.27 КБ
Предварительный просмотр:

Подписи к слайдам:

« Загадка трёх точек» Информационно-исследовательский проект

Цели проекта: построение сечений в кубе, проходящих через три точки; составление задач по теме « Сечение куба плоскостью»; оформление презентации; подготовка выступления.

В геометрии нет царской дороги Евклид

Аксиомы стереометрии Через любые три точки пространства, не лежащие на одной прямой, проходит единственная плоскость.

Для решения многих геометрических задач, связанных с кубом полезно уметь строить на рисунке их сечения различными плоскостями. Под сечением будем понимать любую плоскость (назовем ее секущей плоскостью), по обе стороны от которой имеются точки данной фигуры. Секущая плоскость пересекает многогранник по отрезкам. Многоугольник, который будет образован этими отрезками, и является сечением фигуры.

Правила построения сечений многогранников: 1) проводим прямые через точки, лежащие в одной плоскости; 2) ищем прямые пересечения плоскости сечения с гранями многогранника, для этого: а) ищем точки пересечения прямой принадлежащей плоскости сечения с прямой, принадлежащей одной из граней (лежащие в одной плоскости); б) параллельные грани плоскость сечения пересекает по параллельным прямым.

Куб имеет шесть граней. Его сечением могут быть : треугольники, четырехугольники, пятиугольники, шестиугольники.

Рассмотрим построение этих сечений.

Полученный треугольник EFG будет искомым сечением . Построить сечение куба плоскостью, проходящей через точки E , F , G , лежащие на ребрах куба .

Построить сечение куба плоскостью, проходящей через точки A, C и M.

Для построения сечения куба, проходящего через точки лежащие на ребрах куба, выходящих из одной вершины, достаточно просто соединить данные точки отрезками . В сечении получится треугольник.

Построить сечение куба плоскостью, проходящей через точки E , F , G , лежащие на ребрах куба.

Полученный прямоугольник BCFE будет искомым сечением. Построить сечение куба плоскостью, проходящей через точки E , F , G , лежащие на ребрах куба, для которых AE = DF . Решение. Для построения сечения куба, проходящего через точки E , F , G , соединим точки E и F . Прямая EF будет параллельна AD и, следовательно, BC . Соединим точки E и B , F и C .

Построить сечение куба плоскостью, проходящей через точки E , F , лежащие на ребрах куба и вершину B . Решение. Для построения сечения куба, проходящего через точки E , F и вершину B , Соединим отрезками точки E и B , F и B . Через точки E и F проведем прямые, параллельные BF и BE , соответственно.

Полученный параллелограмм BFGE будет искомым сечением Построить сечение куба плоскостью, проходящей через точки E , F , лежащие на ребрах куба и вершину B . Решение. Для построения сечения куба, проходящего через точки E , F и вершину B , Соединим отрезками точки E и B , F и B . Через точки E и F проведем прямые, параллельные BF и BE , соответственно.

Плоскость сечения параллельна одному из ребер куба или проходит через ребро (прямоугольник) Плоскость сечения пересекает четыре параллельных ребра куба (параллелограмм)

Полученный пятиугольник EFSGQ будет искомым сечением Построить сечение куба плоскостью, проходящей через точки E , F , G , лежащие на ребрах куба. Решение. Для построения сечения куба, проходящего через точки E , F , G , проведем прямую EF и обозначим P её точку пересечения с AD . Обозначим Q , R точки пересечения прямой PG с AB и DC . Обозначим S точку пересечения FR c СС 1. Соединим точки E и Q , G и S .

Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1). Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый). Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую. Пятиугольник MNLPS — искомое сечение .

В сечении куба плоскостью может получится только тот пятиугольник, у которого имеются две пары параллельных сторон.

Построить сечение куба плоскостью, проходящей через точки E , F , G , лежащие на ребрах куба. Решение. Для построения сечения куба, проходящего через точки E , F , G , найдем точку P пересечения прямой EF и плоскости грани ABCD . Обозначим Q , R точки пересечения прямой PG с AB и CD . Проведем прямую RF и обозначим S , T её точки пересечения с CC 1 и DD 1. Проведем прямую TE и обозначим U её точку пересечения с A 1 D 1. Соединим точки E и Q , G и S , F и U . Полученный шестиугольник EUFSGQ будет искомым сечением .

В сечении куба плоскостью может получится только тот шестиугольник, у которого имеется три пары параллельных сторон.

Дано: M€AA1 , N€B1C1,L€AD Построить: ( MNL)

Комментировать
3 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector