Большинство специалистов считают, что в кинескопах случаются лишь два вида неисправностей — короткое замыкание между электродами, либо пониженная эмиссия, поскольку многие рекомендуемые методики и приборы для тестирования кинескопов сводят все многообразие возможных проверок к измерению эмиссии катодов и к выяснению, нет ли междуэлектродного замыкания. Однако каждая из этих обширных категорий включает в себя ряд промежуточных, дефектных состояний, которые необходимо идентифицировать для надежной диагностики и восстановления.
Оборванная (перегоревшая) нить накала не может нагреть катоды. Кинескоп с такой неисправностью восстановлению не подлежит. Однако такое случается довольно редко, поскольку нити накала изготавливаются довольно качественные и надЈжные.
Замыкание нити накала с катодом
Замыкание нити накала с катодом происходит, когда эти два элемента соприкасаются из-за деформации хотя бы одного из них (как правило, нити накала в результате провисания, при работе, из-за больших температурных режимов), либо в результате попадания в промежуток между ними частички проводящего материала. Симптомы этой неисправности зависят от того, как питается нить накала. Если на неЈ подается переменное напряжение 50 Гц с накальной обмотки трансформатора, то при замыкании нити накала с катодом на изображении появляются “тянучки”, ослабляется контраст, и возможно появление линий обратного хода. Часто накальное напряжение снимается с отдельной обмотки строчного трансформатора, тогда замыкание может остаться незамеченным, если эта обмотка не имеет непосредственной гальванической связи с общим проводом. Наличие такой связи в сочетании с замыканием нити накала, конечно, нарушит режим кинескопа, изображение исчезнет, левая часть экрана (примерно половина или треть) будет залита белым светом, а в правой части растр будет менее ярким.
Часто замыкание Н-К появляется только после того, как телевизор поработает некоторое время. В этом случае оно обнаруживается по внезапному появлению на изображении дефектов, о которых упоминалось выше.
Обнаружить замыкание нити накала кинескопа очень легко, если оно носит постоянный характер, присоединив щупы омметра к соответствующим выводам кинескопа. Разумеется, перед этим необходимо снять панельку с цоколя. Если переходное сопротивление мало (от единиц до десятков Ом), это означает, что замыкание вызвано провисанием нити накала, а более высокие значения сопротивления показывают, как правило, что в промежуток Н-К попала посторонняя частица. И в том и в другом случае не следует пытаться устранить замыкание прожогом, как это делается при замыканиях катод-управляющая сетка, поскольку существует реальная опасность повредить при этом нить накала и окончательно загубить кинескоп.
Самый эффективный способ устранить последствия замыкания нити накала, это подать напряжение накала через развязывающий трансформатор малой емкости. Наиболее просто это получается, если подогрев катода осуществляется от строчного трансформатора. Развязывающий трансформатор, в этом случае можно изготовить, намотав на кольце КЗ 1Х8,5Х6 из феррита М2000НМ две одинаковые обмотки по 22 витка проводом ПЭВ-0,75.
Замыкания управляющей сетки с катодом
Большинство замыканий управляющей сетки происходит, когда частичка проводящего материала попадает в промежуток между катодом и управляющей сеткой. Замыкания между управляющей и ускоряющей сетками возможны, но происходят значительно реже. Управляющая сетка, которая замыкается с катодом, практически утрачивает свою функцию, ток луча становится максимально возможным, и в результате экран заливается ярким белым или одним из основных цветов. Чрезмерный ток луча может вызвать срабатывание защиты, и телевизор выключится. Подобно замыканиям нити накала замыкания управляющей сетки могут носить постоянный характер либо появляться через некоторое время после включения телевизора, В первом случае они обнаруживаются с помощью омметра, а во втором — по внезапному увеличению яркости экрана и часто следующего за этим выключению телевизора. В отличие от замыканий нити накала замыкания управляющей сетки могут быть устранены, и есть смысл попытаться это сделать. Частички, которые попадают в зазор катод – управляющая сетка, как правило,очень малы, поэтому их можно удалить путем прожога. Для этого к замкнутому промежутку катод — управляющая сетка присоединяется заряженный напряжением 450 V электролитический конденсатор емкостью около 100 mkf. Плюсовой вывод конденсатора присоединяется к управляющей сетке, а минусовой — к катоду. Разрядный ток конденсатора настолько велик, что замыкающая частичка испаряется. Иногда для устранения замыкания приходится несколько раз заряжать конденсатор и разряжать его через замкнутый промежуток. Если после нескольких попыток устранить замыкание не удается, значит, кинескоп восстановлению не подлежит.
Нелинейность передаточной характеристики (“гамма-дефект”)
Каждый электронный прожектор кинескопа характеризуется зависимостью тока луча от смещения на управляющей сетке гамма характеристикой. Для хорошей передачи всех градаций яркости эта зависимость должна быть по возможности линейной. Нарушение линейности гамма характеристики называется “гамма-дефект”. Кинескоп с такой неисправностью выдает перенасыщенные яркие области изображения и глубокие темные места, а число градаций серого невелико. Изображение принимает “силуэтный” характер. Вопреки распространенному мнению о том, что эта неисправность характерна для “газящих” трубок, на самом деле она вызвана дефектным катодом. “Гамма-дефект” возникает, когда центральная область катода теряет способность выдавать достаточный ток из-за повреждения эмиссионного слоя. Центр катода изнашивается обычно раньше периферийных областей, потому что края начинают давать свой вклад в ток луча только на ярких участках изображения, и потому дольше сохраняют эмиссионную способность.
Возникновение гамма дефекта при истощении центра катода
Восстановить приемлемое качество работы такого катода можно единственным способом, уменьшив по абсолютной величине напряжение смещения. Катод управляющая сетка. Это проделывается путем увеличения постоянного напряжения на управляющей сетке, в результате чего расширяется рабочая область катода в начальном участке гамма характеристики. В цветных кинескопах с планарным расположением электронных прожекторов и с само сведением такая операция, как правило, не удается, потому что все три управляющие сетки электрически соединены между собой, и чтобы не нарушить баланс белого, приходится регулировать смещение путем уменьшения постоянного напряжения на дефектном катоде. При этом наступает ограничение видеосигнала снизу, и теряется яркость светлых участков изображения.
Причиной пониженной яркости изображения часто бывают катоды с загрязненной поверхностью (так называемые “отравленные” катоды) Загрязнения, которые обычно являются продуктами химических реакций взаимодействия остатков воздуха в баллоне кинескопа с горячим материалом катода, действуют как покрытие, мешающее электронам покидать поверхность катода. Если загрязнения покрывают всю поверхность катода, кинескоп выдает пониженную яркость во всех градациях. Часто загрязнения обнаруживаются только на краях катода, потому что на центральной части они не удерживаются из-за постоянной эмиссии. В результате при нормальных черных и серых тонах имеется пониженная яркость белых участков изображения (в отличие от “гамма дефекта”), что приводит к ослаблению контраста.
Кинескоп с такой неисправностью можно попытаться восстановить. Способ восстановления заключается в следующем: на подогреватель подается пониженное накальное напряжение, а к управляющей сетке прикладывается положительное напряжение около 200 V. Ток катода при этом следует ограничить значением 100 мА, а время воздействия должно быть не более 1,0 — 1,5 секунд во избежание перегрева катода. Поверхность катода “вскипает”, загрязнения срываются с его поверхности под действием положительного напряжения смещения и оседают на управляющей сетке, где они уже не опасны. Такая операция при необходимости повторяется до трех раз, причем после каждого цикла необходимо контролировать ток эмиссии катода, т. е. проверять, насколько эффективно идет процесс восстановления. Если после трех циклов восстановления ток эмиссии не возрастет до приемлемого уровня, следует повторить эту операцию при токе катода 150 мА
Для контроля тока эмиссии и для восстановления “отравленных” катодов удобно воспользоваться прибором, принципиальная схема которого и конструкция описаны в журнале “Радио” №10 за 1991 год.
Некоторые кинескопы дают хорошее изображение при нормальной работе, однако, обнаруживают резкое уменьшение эмиссии, если напряжение накала немного уменьшится. Все катоды уменьшают свою эмиссию при снижении накального напряжения, но хороший катод производит электронов намного больше, чем необходимо для формирования электронного луча. Поэтому небольшое уменьшение накального напряжения не приводит к снижению тока луча, поскольку в этом случае недостающие электроны заимствуются из “резерва”. Меньшее количество эмиссионного материала в сочетании с тонким слоем загрязнений является причиной более интенсивного, чем обычно разрушения катода. Оба этих фактора уменьшают количество резервных электронов и в конечном итоге ограничивают ток электронного луча при нормальном накальном напряжении. Поэтому повышенная термочувствительность есть верное указание на неисправность катода. Катод с повышенной термочувствительностью также можно попытаться восстановить с помощью методики, предложенной выше.
Проблемы искаженной цветопередачи возникают, когда три электронных прожектора цветного кинескопа не могут быть сбалансированы для получения нормальных тонов белого и серого. Вместо этого черно-белые участки изображения приобретают какой-либо цветной оттенок, а цветные участки имеют неверную окраску, которая не может быть правильно отрегулирована. Искаженная цветопередача возможна и при нормальной эмиссии всех трех катодов цветного кинескопа. Изготовители кинескопов указывают, что ток луча любого из трех катодов должен быть не менее 55% тока луча каждого из других катодов. Электронный прожектор, ток которого ниже этого предела, выходит из диапазона допустимых регулировок и не дает возможность правильно выставить баланс белого.
Если катод потерял большую часть своего эмиссионного материала и производит слишком мало электронов, ток луча резко уменьшается и даже может вовсе исчезнуть. Эта неисправность является примером ненормального износа катода. Как правило, значительно раньше катод приходит в негодность в результате загрязнений, прежде чем станет сколько-нибудь заметной потеря эмиссионного материала. "Осыпание" катода происходит обычно в результате слишком усердного восстановления, при котором с поверхности катода вместе с загрязнениями удаляется полезный эмиссионный материал.
В настоящее время разработано достаточно много схем и методов восстановления кинескопов. Приборы такого типа необходимы любому мастеру, занимающемуся ремонтом телевизоров или мониторов. Обобщая опыт работы с различными приборами, предлагаю свой вариант. Он отличается тем, что имеется возможность плавного регулирования и установки напряжения накала кинескопа и его контроля по строенному прибору. Кинескопы различных марок могут иметь напряжение накала от 1 до 12 В. Данный прибор имеет возможность работать с любыми типами кинескопов. Прибор предназначен для проверки и восстановления кинескопов, а также других электронно-лучевых трубок. Он позволяет оценить ток эмиссии электронной пушки, проверить наличие межэлектродных замыканий и утечек в цепях катод — подогреватель, катод — модулятор, ускоряющий электрод — модулятор, ускоряющий электрод — фокусирующий электрод. С помощью прибора можно также частично восстановить эмиссию электронных пушек кинескопов прокаливанием катода (тренировкой) или с помощью разряда конденсатора. Причем восстанавливать эмиссию можно при разных напряжениях накала. Прибор, схема которого показана на рис.1, состоит из накального трансформатора Тр1 с регулятором на тиристоре в цепи первичной обмотки; Трансформатора Тр2 высокого напряжения с умножителем напряжения; Схемы измерения и коммутации. Работа схемы устройства. При включении прибора выключателем Вк1, начинает светиться неоновый индикатор МН3, ток которого ограничен резистором R10. Переменное напряжение через Вк1 и первичную обмотку Тр1 поступает на выпрямительный мост VD 4-7. С моста выпрямленное напряжение поступает на регулятор напряжения. Тиристор VD3 закрыт. Конденсатор С3 заряжается по цепи: плюс выпрямителя, R5, R4, C3, минус, тиристор при этом закрыт. По достижении заряда С3 порога открывания тиристора, С3 разряжается через R4, R3, управляющий электрод, катод тиристора. Тиристор открывается и шунтирует мост VD4-7. через первичную обмотку Тр1 начинает течь ток, величина которого определяется длительностью открывания тиристора и регулируется резистором R5. Во вторичной обмотке наводится переменное напряжение накала, которое может регулироваться в пределах 1-12 В. Напряжение накала измеряется по прибору, которое поступает на него с моста VD8 через переключатели SA2.1, SA2.2 и соответствующий шунт. С трансформатора Тр2 через выпрямитель- умножитель напряжения C1, VD1, VD2, C2 напряжение 400 В заряжает конденсатор-накопитель С4. R1 ограничивает зарядный ток конденсатора С4. Варистор СН стабилизирует напряжение 400 В. Его необходимо подобрать, а если нет, то заменить сопротивлением 1Мом. Резисторы R6, R7 ограничивают ток в моменты переключения кнопки SB1. Резисторы R8, R9 являются шунтами для расширения пределов измерения прибора. Кнопка SB1 – для переключения прибора в режим замера тока эмиссии (отжата) и восстановления эмиссии. (нажата). Переключатель Sa2 – для подключения прибора к цепям измерения тока эмиссии и цепи накала. Переключатель Sa3 для подключения дополнительного шунта R8 к прибору. Переключатель SA4 – для переключения катодов R G B. Трансформатор Тр1 – любой, имеющий на вторичной обмотке напряжение 12,6 Вольт. Трансформатор Тр2 предназначен для развязки от сети может быть любой и должен имеет на вторичной обмотке напряжение 200 Вольт. Шунты R8 и R9 можно составить из нескольких резисторов (проволочных или типа С2, МЛТ). Их сопротивления зависят от применяемого микроамперметра РА1. Можно применить микроамперметры от 100 до 1000 мкА. Шунты должны быть подогнаны таким образом, чтобы РА1 в первом положении переключателя SАЗ показывал максимальный ток 1000 мкА (для черно-белых кинескопов), а во втором положении — 3000 мкА (для цветных кинескопов). При подборке резистора R5 для замера переменного напряжения на подогревателе катода кинескопа желательно максимальное напряжение всей шкалы микроамперметра РА1 выставить на 15 В. Для удобства цену деления шкалы для каждого предела измерения тока и напряжения нужно записать на приборе против переключателей. Схемы подборки шунтов R8, R9 и дополнительного резистора R5 указаны соответственно на рис.2 (где РА2 — образцовый микроамперметры) и рис.3 (где РЧ — образцовый вольтметр переменного тока). Для более точной регулировки напряжения при подборке резистора R5 трансформатор Т1 можно подключить через ЛАТР. Вторая часть прибора состоит из измерительного и питающего шнуров. Шнуры соединяют с прибором к разъему ХР2. Измерительный шнур состоит из жгута проводов, подпаянных к лепесткам панелек кинескопов. Схема измерительного шнура показана на рис. 4. Для проверки кинескопа необходимо: 1. Отсоединить плату или панельку от кинескопа. Минимальный ток эмиссии, обеспечивающий удовлетворительное изображение: для черно-белых кинескопов-30 мкА, для цветных кинескопов — 100 мкА. Максимальный ток эмиссии для черно-белых кинескопов -500 мкА, для цветных кинескопов -1500-2000 мкА. Если после прогрева кинескопа ток эмиссии неудовлетворительный или отсутствует, необходимо поднять напряжение накала до 8 В, дать прогреться 10 с. Если после предыдущей операции ток эмиссии неудовлетворительный или отсутствует, необходимо увеличить напряжение накала до 10 В. Каждое переключение "Накала" контролируется вольтметром. Если после предыдущей операции ток неудовлетворительный или отсутствует, то это указывает на обрыв катода или ускоряющего электрода. Если кинескоп имеет минимальную или среднюю эмиссию при накале 6,5 В, — то его необходимо восстановить — "прострелять" до максимально возможного тока. Для восстановления кинескопа необходимо: Подать на кинескоп накал в следующей последовательности: Предлагаемый в данной статье достаточно простой прибор для проверки и восстановления кинескопов телевизоров и мониторов положительно зарекомендовал себя в течение почти десяти лет. Может применяться как при отбраковке новых (восстановленных) кинескопов, так и при попытке восстановления последних без механической разборки колбы. Данная конструкция представляет собой совокупность давно известных конструкций, ссылки на которые даны в конце статьи. Из личного опыта. У меня не вызывает сомнения, что часто описываемый и рекламируемый некоторыми фирмами способ восстановления эмиссии цветного кинескопа при помощи искрового разряда катод-модулятор может быть интересен чисто академически, или если специалист или фирма озабочены не качеством ремонта, а получением сиюминутной прибыли в ущерб имени и репутации — объяснение простое и следует из практики. Ни один из цветных кинескопов "восстановленный" таким способом не проработал и шести месяцев при самых щадящих режимах. Последующие попытки "восстановления" в лучшем случае продлевали агонию максимум на один месяц. Токи катодов падали лавинообразно и никакие меры, в последствии, "оживить" цветной кинескоп уже не могли. Хочу оговориться, что вышеизложенный абзац относится в большей мере к цветным кинескопам. С ч/б кинескопами результаты значительно лучше. По моему мнению, более приемлемым способом попытки восстановления эмиссии кинескопа является т.н. "тренировка катодов". В 30. 40% случаев эта процедура дает положительный результат, естественно при наличии "хорошего" вакуума внутри колбы кинескопа. Тренировка катодов — процесс сродни тому, который проходит каждый кинескоп в процессе производства на заводах и заключается в следующем. В течение небольшого промежутка времени на подогреватели катодов подается напряжение выше номинального в 2. 2,5 раза. Это приводит к более интенсивному испарению вещества, из которого изготовлены катоды, и при этом несколько замедляется процесс "старения" катодов. Не вдаваясь в сложные физико-химические процессы, происходящие внутри колбы кинескопа, хочу отметить, что панацеи не существует и сильно изношенному или загазованному кинескопу "помочь" невозможно. Надо понимать, что кинескоп — это электронная лампа с конечным сроком эксплуатации. Качество кинескопа обратно пропорционально давлению внутри колбы (выше давление — ниже качество). Режимы эксплуатации кинескопа должны всегда строго соответствовать ТУ. Перейдем к описанию схемы прибора. Он состоит четырех основных узлов. Узел 1 — блок питания Принципиальная электрическая схема приведена на рис. 1. БП выполнен по схеме двухтактного ВЧ преобразователя известного с 70-х годов и подробно описанного, например А. Петровым в серии статей ("Р/Л", середина 90-х годов). БП вырабатывает: — переменное напряжение (7, = 7 В частотой 25 кГцдля питания накального трансформатора; — переменное напряжение U, = 20 В частотой 25 кГц для питания преобразователя электронной линзы. Принципиальная электрическая схема приведена на рис. 2. Накальный трансформатор с контролем напряжения Uн формирует ступенчато регулируемое напряжение накала величиной 1,5. 13 В, контролируемое вольтметром PV1 и напряжение 200 В, использующееся в схеме восстановления кинескопа электроискровым методом. Узел 3 — преобразователь "электронная линза" Принципиальная электрическая схема приведена на рис. 3. Преобразователь выполнен по схеме блокинг-генератора. Он вырабатывает напряжения, поступающие на ускоряющий и фокусирующий электроды, а также на второй анод кинескопа для визуальной оценки качества катодов. Узел 4 — умножитель напряжения Принципиальная электрическая схема приведена на рис. 4. Умножитель служит для восстановления работоспособности кинескопа электроискровым методом. Порядок работы с прибором 1. Проверка кинескопа При отбраковке кинескопов, во время покупки или после восстановления, наиболее приемлемым методом, является метод "электронной линзы". Для этого необходимо на электроды кинескопа подать следующие напряжения: Uн, U2a, Uф, Uк. Напряжение Uк должно быть подано до того, как появится высокое напряжение Uф и U2а. Соблюдение этого условия обязательно. Появление высоких напряжений при холодных катодах ведет к "отравлению" последних. Итак, подключив Uн, Uк , Uф, U2а (Uн должно быть номинальным), необходимо нажать на кнопку "R", "G" или "В" (рис. 4), нажать и отпустить кнопку SB1 (рис. 3) и вращая резистор "Фокус" установить четкую проекцию выбранного катода на экране кинескопа. Если катод в удовлетворительном состоянии, то на экране кинескопа должен быть неправильной формы круг выбранного цвета без засветок, затемнений, точек и т.д. 2. Тренировка катодов. Подключить Uн. Установить номинальное напряжение. В течение 8. 10 мин ступенчато, при помощи переключателя SA3 (рис. 2) увеличить напряжение Uн до 12. 13 В, выдержать в таком состоянии 10. 12 мин, а потом в течение 5. 8 мин снизить Uн до Uном, после чего перейти к пункту 1. 3. Электроискровой метод. Подключить U , катоды и модуляторы. Прогреть катоды втечение5. 10мин, затем нажать на кнопку SB3 (рис. 4), визуально убедиться в наличие разряда между катодом и модулятором, после чего перейти к пункту 1. Пункты 2 и 3 необходимо выполнять, только если проверка ("электронная линза" или др.) кинескопа показала необходимость восстановления. Пункт 3 применяется только в отношении старых кинескопов, так как искровой разряд в хорошей пушке может привести к вырыванию вещества катода и снижению эмиссии данного катода. Конструкция и детали Конструкция устройства блочная. Умножитель и преобразователь "электронной линзы" собраны на отдельных платах, блок питания и накальный трансформатор — на одной плате, хотя компоновка может быть произвольной. В моем варианте весь прибор уместился в корпусе от носимого магнитофона "Легенда-404". Транзисторы блока питания любые высоковольтные биполярные или полевые, например КТ812, КТ872А, КТ8114, КТ8127, BUZ76, BUZ90 и т.д., главное чтобы пара была схожа по параметрам. В моем варианте — 2 транзистора КТ834А. Транзистор VT3, такой же, главное чтобы параметр h21э>10. 12, иначе может быть проблема с запуском блокинг-генератора. В моем варианте- КТ838А. Трансформатор Т1: обмотка I содержит 220 витков, 11-10 витков, III -28 витков, IV — 5 витков. Диаметр провода особого значения не имеет, главное, чтобы выдерживал протекающий по нему ток. Провода обмоток необходимо укладывать по всей длине окружности кольца равномерно, а сами обмотки тщательно изолировать. Это касается всех трех трансформаторов. Трансформатор Т2: обмотка I содержит 6 витков, II-4 витка, III-4 витка. Трансформатор Т3: обмотка I содержит 11 витков, 11-13 витков, III — 250 витков. Резисторы R6, R8 — проволочные. Применение съемных панелек кинескопа неоправданно из-за разнообразия кинескопов с разными цоколевками. Применены контакты от разъема ШР подходящие по диаметру. При использовании прибора необходимо соблюдать технику безопасности, как и при ремонте телевизоров. 1. Адамович В. и др. Вторая жизнь цветных кинескопов. — М.: Радио и связь, 1992. |