No Image

Как построить квадратную диаграмму

СОДЕРЖАНИЕ
18 просмотров
16 декабря 2019

На столбиковых диаграммах статистические данные изображаются в виде вытянутых по вертикали прямоугольников. При построении столбиковых диаграмм необходимо выполнять следующие требования: 1) шкала, по которой устанавливается высота столбика, должна начинаться с нуля; 2) шкала должна быть, как правило, непрерывной; 3) основания столбиков должны быть равны между собой; столбики могут быть размещены на одинаковом расстоянии друг от друга, вплотную один к другому или наплывом, при котором один столбик частично накладывается на другой; 4) наряду с разметкой шкалы соответствующими цифровыми надписями следует снабжать и сами столбцы.

Пример. Изобразим графические данные о числе негосударственных общеобразовательных школ России за следующие учебные годы (на начало года), ед.: 1997/98 – 570; 1998/99 – 568; 1999/2000 – 607; 2000/01 – 635. Исследуем негосударственные общеобразовательные учреждения с помощью столбиковой диаграммы сравнения. На горизонтальной оси поместим основания шести столбиков на расстоянии 0,5 см друг от друга. Ширина столбиков – 1 см. Масштаб на вертикальной оси – 10 ед. на 1 см (рис. 1). На столбиковой диаграмме изображаемые величины пропорциональны длине столбцов. Из диаграммы видно, что число не государственных школ в 2000/01 учебном году составило 635 ед., что больше, чем во все предыдущие годы. Наименьшее число школ за исследуемый период времени было в 1998/99 учебном году. Из графика также видно, что число школ в 1997/98 и 1998/99 учебных годах почти не изменялось, однако далее количество негосударственных школ увеличивается с каждым годом. Можно предположить, что в следующем году их число также возрастет.

Рис. 1. Число общеобразовательных негосударственных

школ России за 1997-2001 гг.

Полосовые диаграммысостоят из прямоугольников, расположенных горизонтально (полосами, лентами). В этом случае масштабной шкалой будет горизонтальная ось. Принцип их построения тот же, что и столбиковых.

В отличие от столбиковых или полосовых диаграмм в квадратных и круговых диаграммах величина изображаемого явления выражается размером площади. Чтобы построить квадратную диаграмму, необходимо из сравниваемых статистических величин извлечь квадратные корни, а затем построить квадраты со сторонами, пропорциональными полученным результатам.

Пример.Построим квадратную диаграмму для сравнения численности учителей и учащихся в негосударственных школах за 2001 г. (на начало года). Для построения диаграммы нужно извлечь квадратные корни из следующих величин: численность учителей – 16 тыс. чел; численность учащихся – 61 тыс. чел. Это составит соответственно 4; 7,81. Чтобы построить по этим данным квадраты, необходимо выбрать масштаб. Примем 1 см за 0,8 тыс. чел. Сторонами квадратов на графике будут отрезки, пропорциональные полученным числам (рис. 2). Таким образом, квадратные диаграммы выражают размер явления своей площадью. Из графика видно, что квадрат, изображающий численность

учащихся, почти в 4 раза больше квадрата, изображающего численность учителей. Можно сделать вывод о том, что в 2001 г. на одного учителя в среднем приходилось по четыре учащихся.

Рис. 2. Численность учащихся и учителей в негосударственных школах России

на начало 2001 года (тыс. чел.)

Круговые диаграммыстроятся аналогично. Разница состоит лишь в том, что на графике вычерчиваются круги, площади которых пропорциональны квадратным корням из изображаемых величин (рис. 3). Круги изображают исследуемые величины своей площадью. Если поместить один в другой, можно легко сравнить их площади. Из графика видно, что площадь большого круга в 7 – 8 раз больше площади малого круга. На этом основании можно сделать вывод, что в государственные вузы России в 2001 г. поступило учащихся примерно в 7 – 8 раз больше, чем в негосударственные вузы.

Рис. 3. Численность учащихся, поступивших в

государственные и негосударственные вузы России 2001 г.

Диаграммы фигур-знаковпредставляют собой графические изображения в виде рисунков, силуэтов, фигур, соответствующих содержанию статистических данных. Они отличаются от других видов диаграмм тем, что отдельные величины на них изображаются определенным количеством одинаковых по размеру и типу фигур.

Пример.Изобразим динамику производства часов в одном из регионов России за 1999 – 2002 гг. с помощью диаграммы фигур-знаков. Условно примем один рисунок за 1000 штук часов. Тогда число часов: в 1999 г. в размере 4717 шт. должно быть изображено в количестве 4,7 рисунка; в 2000 г. в размере 3672 шт. – 3,7 рисунка; в 2001 г. в размере 3987 шт. – 3,99 рисунка; в 2002 г. в размере 2189 шт. – 2,2 рисунка (рис. 4).

Рис. 4. Производство часов в одном из регионов России в 1999-2002 гг.

Секторные диаграммыудобно строить следующим образом: вся величина явления принимается за 100%, рассчитываются доли отдельных его частей в процентах. Круг разбивается на секторы пропорционально частям изображаемого целого. Таким образом, на 1% приходится 3,6°. Для получения

центральных углов секторов, изображающих доли частей целого, необходимо их процентное выражение умножить на 3,6°.

Пример.Изобразим с помощью секторной диаграммы число студентов негосударственных вузов России на начало 2000/01 учебного года по формам обучения. На дневной форме обучается 39% студентов; на вечерней – 9%; на заочной – 51%; на экстернате – 1% студентов. Построим круг произвольного радиуса. По данным о числе студентов, для построения секторов определим центральные углы: для дневной формы центральный угол составил 140,4° (39 х 3,6); для вечерней – 32,4°(9 х 3,6); для заочной – 183,6° (51 х 3,6); для экстерната – 3,6° (1 х 3,6). При помощи транспортира разделим круг на соответствующие сектора (рис. 5). Если данные о структуре какого-либо явления выражаются в абсолютных величинах, то для нахождения секторов необходимо 360° разделить на величину целого, а затем частное от деления последовательно умножить на абсолютные значения частей.

Рис. 5. Структура форм обучения студентов государственных

и негосударственных вузов России на начало 2000/01 учебного года

Для одновременного сопоставления трех величин, связанных между собой таким образом, что одна величина является произведением двух других, применяют диаграммы, называемые «знак Варзара».

Знак Варзарапредставляет собой прямоугольник, у которого одни сомножитель принят за основание, другой – за высоту, а вся площадь равна произведению.

Пример.Имеются данные по сбору яровой пшеницы в одном из регионов России в 2003 г., в котором при посевной площади 14,5 млн. га урожайность составила 1,16 т/га. В нашем случае в основание прямоугольника положена урожайность яровой пшеницы, высота – посевная площадь, а площадью прямоугольника является валовой сбор яровой пшеницы. Правильность показаний диаграммы можно проверить простыми математическими вычислениями: посевная площадь = валовой сбор /урожайность =16800000 / 1,16 = 14482758 га (рис. 6).

Рис. 6. Зависимость валового сбора яровой пшеницы от урожайности

и посевной площади в одном из регионов России 2003

Линейные диаграммышироко применяются для характеристики изменений явлений во времени, выполнения плановых заданий, а также для изучения рядов распределения, выявления связи между явлениями. Линейные диаграммы строятся на координатной сетке. Геометрическими знаками в линейных диаграммах служат точки и последовательно соединяющие их отрезки прямой, которые

складываются в ломаные кривые.

Пример.При помощи линейной диаграммы можно изобразить данные о конкурсе на вступительных экзаменах в высшие учебные заведения в России за 1996 – 2000 гг.; на одного зачисленного приходится державших экзамены: Год 1996 1997 1998 1999 2000

Конкурс, чел. 1,8 1,7 1,8 1,9 1,9

В прямоугольной системе координат нанесем на ось ординат данные о конкурсе абитуриентов (рис. 7). Масштаб: 1 см = 0,05 чел. Из графика видно, что положение кривой определяется не только данными о конкурсе, но и интервалами времени между датами. Из данных рис. 7 видно, как меняется конкурс в вузы за 1996 – 2000гг. В 1997 г. конкурс заметно снизился по сравнению с конкурсом в 1996г. Однако, с 1997г. конкурс в высшие учебные заведения возрастал и в 1999 г. превысил конкурс 1996 г. С 1999 по 2000г. конкурс в вузы России оставался неизменным.

Читайте также:  Как правильно торговать на бирже криптовалют

Не нашли то, что искали? Воспользуйтесь поиском:

Диаграммы

Наиболее распространенным способом графического изображения статистической информации являются диаграммы.

Диаграммы принято подразделять по их форме на следующие виды:

  • столбиковые диаграммы;
  • полосовые диаграммы;
  • круговые диаграммы;
  • линейные диаграммы;
  • фигурные диаграммы;

Другим признаком подразделения диаграмм является их содержание. По этому признаку они подразделяются на диаграммы сравнения, структурные, динамические, графики связи, графики контроля и др.

Диаграммы сравнения отражают соотношения различных исследуемых объектов в связи с каким-либо экономическим показателем. Самыми удобными графиками, на которых осуществляется сопоставление величин экономических показателей, являются столбиковые и полосовые диаграммы. Для изображения таких диаграмм применяется прямоугольная система координат. На оси абсцисс таких графиков помещается основа для определенных столбцов одинакового размера для всех исследуемых объектов. Высота каждого их столбцов должна выражать величину того экономического показателя, который отражен в определенном масштабе на оси ординат. Таковы особенности столбиковых диаграмм. Проиллюстрируем их следующей схемой (см. схему №1).

Полосовые диаграммы, в отличие от столбиковых, изображают по горизонтали: основа полос располагается на оси ординат, а экономические показатели в определенном масштабе — на оси абсцисс.

Каковы же особенности круговых и квадратных диаграмм? В ряде случаев диаграммы сравнения представляют собой круги либо квадраты; их площадь является пропорциональной величине определенных экономических показателей.

Фигурные диаграммы содержат соотношения определенных экономических показателей (объектов), которые представлены в условном виде как определенные художественные фигуры, например, головы крупного рогатого скота, какие-либо машины, и др. Такие диаграммы при первом же взгляде на них фиксируют на себе внимание, и представляют определенную числовую информацию в наиболее доходчивом виде. Структурные диаграммы (иначе-секторные) дают возможность представить состав исследуемых экономических показателей и долю (удельный вес) конкретных частей в совокупной сумме экономического показателя. В рассматриваемых диаграммах экономические явления представляются как определенные геометрические фигуры (круги или квадраты), которые разбиты на несколько секторов. Площадь круга или квадрата принимается равной ста процентам либо единице. Площадь же любого данного сектора характеризуется долей рассматриваемой части в составе ста процентов или единицы.

Динамические диаграммы характеризуют динамику, то есть изменения количественной оценки данного экономического явления в течение известных периодов времени. С этой целью могут применяться любые из рассмотренных видов диаграмм (столбиковые, полосовые, круговые, квадратные, фигурные). Вместе с тем чаще всего здесь используются линейные диаграммы (графики). На таких диаграммах изменение количественной оценки экономического явления изображается определенной линией, которая выражает непрерывность происходящего процесса. На оси абсцисс линейного графика изображаются определенные периоды времени, а на оси ординат — соответствующие величины данного экономического явления за рассматриваемые периоды времени в соответствии с принятым числовым масштабом.

Рассматриваемые линейные графики (диаграммы) применяются также и при изучении взаимосвязей между отдельными экономическими показателями. В этом случае их можно рассматривать как графики связи. В графиках связи ось абсцисс содержит числовые значения какого-либо фактора, а ось ординат — числовые значения результирующего показателя. Подобные графики характеризуют тенденцию и форму связи между экономическими показателями. Графики контроля используются в экономическом анализе в процессе рассмотрения выполнения бизнес-планов. Проиллюстрируем это следующим примером.

График контроля выполнения плана по выпуску продукции

В этом графике сплошная линия означает план по выпуску продукции, прерывистая линия — фактическое выполнение плана, Δ — отклонение фактического выполнения от плана.

Таким образом, графические способы отображения числовых данных находят большое применение в экономическом анализе и статистике. Они используются в целях наглядного отображения состава и структуры экономических явлений, выявления взаимосвязей между обобщающими показателями и влияющими на них факторами и т.д. Графические изображения имеют большое иллюстративное значение, являются доходчивыми и понятными. В отличие от аналитических таблиц графики и диаграммы наглядно представляют основополагающие тенденции развития изучаемого экономического явления, дают возможность в образной форме показать закономерности развития этого явления.

Линейная диаграмма

Линейные диаграммы используются для характеристики вариации, динамики и взаимосвязи. Линейные графики строятся на координатной сетке. Геометрическими знаками служат точки и отрезки прямой, которые их последовательно соединяют в ломаные.

Линейные диаграммы для характеристики динамики применяют в следующих случаях:

  • если количество уровней ряда динамики достаточно велико. Их применение подчеркивает непрерывность процесса развития в виде непрерывной линии;
  • с целью отображения общей тенденции и характера развития явления;
  • при необходимости сравнения нескольких динамических рядов;
  • если нужно сопоставить не абсолютные уровни явления, а темпы роста.

При изображении динамики с помощью линейной диаграммы на ось абсцисс наносят характеристики времени (дни, месяцы, кварталы, годы), а на оси ординат — значения показателя (пассажирские перевозки в России).

Перевозка пассажиров транспортом общего пользования в России

Годы 2006 2007 2008 2009 2010 2011
Млн.чел. 47885 48114 46283 45037 45412 45817

На одном линейном графике можно построить несколько кривых, (рис. 6.6), которые позволят сравнить динамику различных показателей или одного и того же показателя в разных регионах, отраслях и др.

Для построения этого графика воспользуемся данными о динамике производства овощей и картофеля в России.

Производство овощей в России, млн.т

Годы 2006 2007 2008 2009 2010 2011
Картофель 38,3 37,7 33,8 39,9 38,7 37,0
Овощи 10,0 9,8 9,6 11,3 10,7 11,1

Рис. 6.6. Динамика производства картофеля и овощей в России в 2006-2011 гг.

Логарифмическая диаграмма

Однако линейные диаграммы с равномерной шкалой искажают относительные изменения экономических показателей. Кроме того, их применение теряет наглядность и даже становится невозможным при изображении рядов динамики с резко изменяющимися уровнями, что характерно для динамических рядов за длительный период времени. В таких случаях, вместо равномерной шкалы используют полулогарифмическую сетку, в которой на одной оси наносится линейный масштаб, а на другой — логарифмический. В этом случае логарифмический масштаб наносится на ось ординат, а на оси абсцисс располагают равномерную шкалу для отсчета времени по принятым интервалам (год, квартал и пр.). Для построения логарифмической шкалы необходимо: найти логарифмы исходных чисел, начертить ординату и разделить ее на несколько равных частей. Затем нанести на ординату отрезки, пропорциональные абсолютным приростам этих логарифмов, и записать соответствующие логарифмы чисел и их антилогарифмы.

Полученные антилогарифмы дают вид искомой шкалы на ординате.

Логарифмы чисел Числа
3,0 1000
2,8 317
2,0 100
1,5 31,7
1,0 10

Рассмотрим пример использования логарифмического масштаба для отображения динамики производства контрольно-кассовых машин в России:

Годы Производство, тыс.шт. Логарифмы уровней
2006 32,5 1,5119
2007 81,2 1,9096
2008 202,0 2,3054
2009 368,0 2,5658
2010 203,0 2,3075
2011 220,0 2,3424

Найдя минимальные и максимальные значения логарифмов производства контрольно-кассовых машин, строим масштаб с таким расчетом, чтобы все они разместились на графике. Затем находим соответствующие точки (с учетом масштаба) и соединяем их прямыми линиями. Полученный график (см. рис. 6.7.) с использованием логарифмического масштаба называется диаграммой на полулогарифмической сетке.

6.7. Динамика производства контрольно-кассовых машин в России в 2006-2011 гг.

Радиальная диаграмма

Одним из видов линейных диаграмм являются радиальные диаграммы. Они строятся в полярной системе координат с целью отражения процессов, ритмически повторяющихся во времени. Радиальные диаграммы можно разделить на два вида: замкнутые и спиральные.

Читайте также:  Как найти потерянный ноутбук

В замкнутых радиальных диаграммах в качестве базы отсчета берется центр круга (рис. 6.8). Вычерчивается круг радиусом, приравненным среднемесячному показателю изучаемого явления, который делится затем на двенадцать равных секторов. Каждый радиус изображает месяц, причем расположение их аналогично циферблату часов. На каждом радиусе делается отметка согласно масштабу, выбранному исходя из данных по каждому месяцу. Если данные превышают среднегодовой уровень, то отметка делается на продолжении радиуса вне окружности. Затем отметки всех месяцев соединяются отрезками.

Рассмотрим пример построения замкнутой радиальной диаграммы по месячным данным отправления грузов железнодорожным транспортом общего пользования в России в 1997 г.

1 2 3 4 5 6 7 8 9 1 1 1
68,9 67,6 776,3 70,7 71,3 74,2 76,3 75,7 79,3 74,9 74,0 74,2

Рис. 6.8. Отправление грузов железнодорожным транспортом общего пользования

В спиральных радиальных диаграммах в качестве базы отсчета берется окружность. При этом декабрь одного года соединяется с январем следующего года, что дает возможность изобразить весь ряд динамики в виде одной кривой. Особенно наглядна такая диаграмма тогда, когда наряду с сезонным ритмом наблюдается неуклонный рост уровней ряда.

Другие виды диаграмм

Столбиковая диаграмма

Среди плоскостных диаграмм наибольшее распространение получили столбиковые, полосовые или ленточные, треугольные, квадратные, круговые, секторные, фигурные.

Столбиковые диаграммы изображаются в виде прямоугольников (столбиков), вытянутых по вертикали, высота которых соответствует значению показателя (рис. 6.9).

Полосовая диаграмма

Принцип построения полосовых диаграмм тот же, что и столбиковых. Отличие заключается в том, что полосовые (или ленточные) графики представляют значение показателя не по вертикальной, а по горизонтальной оси.

Оба вида диаграмм применяются для сравнения не только самих величин, но и их частей. Для изображения структуры совокупности строят столбики (полосы) одинакового размера, принимая целое за 100%, а величину частей целого — соответствующей удельным весам (рис. 6.10).

Для изображения показателей с противоположным содержанием (импорт и экспорт, сальдо положительное и отрицательное, возрастная пирамида) строят разнонаправленные столбиковые или полосовые диаграммы.

Основу квадратных, треугольных и круговых диаграмм составляет изображение значения показателя величиной площади геометрической фигуры.

Квадратная диаграмма

Для построения квадратной диаграммы устанавливают размер стороны квадрата путем извлечения корня квадратного из значения показателя.

Так, например, для построения диаграммы на рис. 6.11 из объема услуг связи за 1997 г. в России по отправлению телеграмм
(73 млн.), пенсионных выплат (392 млн.), посылок (24 млн.) квадратные корни составили соответствено 8,5; 19,8; 4,9.

Круговая диаграмма

Круговые диаграммы строятся в виде площади кругов, радиусы которых равны корню квадратному из значений показателя.

Секторная диаграмма

Для изображения структуры (состава) совокупности используются секторные диаграммы. Круговая секторная диаграмма строится путем разделения круга на секторы пропорционально удельному весу частей в целом. Размер каждого сектора определяется величиной угла расчета (1% соответствует 3,6 0 ).

Пример. Доля продовольственных товаров в объеме розничного товарооборота России составила в 1992 г. 55%, а в 1997 г. — 49%, доля непродовольственных товаров составила соответственно 45% и 51%.

Построим два круга одинакового радиуса, а для изображения секторов определим центральные углы: для продовольственных товаров 3,6 0 *55 = 198 0 , 3,6*49 = 176,4 0 ; для непродовольственных товаров 3,6 0 *45 = 162 0 ; 3,6 0 *51 = 183,6 0 . Разделим круги на соответствующие секторы (рис. 6.12).

Треугольная диаграмма

Разновидностью диаграмм, представляющих структуру (кроме столбиковых и полосовых), является диаграмма треугольная. Она применяется для одновременного изображения трех величин, изображающих элементы или составные части целого. Треугольная диаграмма представляет собой равносторонний треугольник, каждая сторона которого является равномерной масштабной шкалой от 0 до 100. Внутри строится координатная сетка, соответствующая линиям, проводимым параллельно сторонам треугольника. Перпендикуляры из любой точки координатной сетки представляют доли трех компонентов, соответствует в сумме 100% (рис. 6.13). Точка на графике соответствует 20% (по А), 30% (по В) и 50% (по С).

Рис. 6.13. Треугольная диаграмма

Фигурная диаграмма

Диаграммы фигурные представляют собой изображение в виде рисунков, силуэтов, фигур.

Статистические графики по направлению использования характеризуются значительным разнообразием. их научная классификация предусматривает такие признаки, как общее назначение, виды, формы и типы основных элементов. Традиционно теория статистики рассматривает классификацию графиков по видам их поля. По этому принципу графические изображения разделяют на диаграммы, картограммы и картодиаграммы.

Диаграммы – это условные изображения числовых величин и их соотношений с помощью геометрических знаков.

Картограммы – изображение числовых величин и их соотношений с помощью нанесения условной штриховки или расцветки на карту – схему.

Картодиаграммы – это сочетание диаграммы с картой – схемой. При построении диаграммы устанавливается определенный масштаб, то есть соотношение между размерами величин на графике и действительной величиной изображаемого явления в натуре.

Наиболее распространенным видом статистических графиков являются диаграммы. В зависимости от способа изображения статистических данных они могут быть в одном измерения, когда эти данные изображают в виде прямых линий или полос одинаковой ширины, и в двух измерениях (плоскости), на каких данных изображают с помощью площадей геометрических фигур (прямоугольников, квадратов, кругов. ).

К первому виду диаграмм относятся линейные, столбиковые, ленточные и др .; ко второму – прямоугольные (квадратные, "Знак Варвара"), круговые, секторные, радиальные, фигурные.

Линейная диаграмма отображает размер показателя в форме линий разной длины, которые образуются в результате соединения точек в координатном поле. Одним из видов линейных диаграмм является линейный график выполнения плана и учетно-плановый график (рис. 27, 28).

Рис. 27. Линейный график динамики поголовья лошадей в хозяйстве

Рис. 28. Учетно-плановый график выполнения предприятием плана производством продукции в течение месяца: а – за декаду; б – нарастающим итогом

Применяют линейные диаграммы в основном для изучения развития явлений во времени.

Строению линейных диаграмм ставят следующие требования:

1) диаграмма должна читаться по горизонтали слева направо, по вертикали – снизу вверх;

2) на оси ординат обязательно сказывается нулевая величина. В случаях, когда соблюдение этого правила связано со значительным уменьшением масштаба и ухудшением наглядности, следует сделать разрыв по всем ординатах (при этом нулевая линия сохраняется.)

3) отрезки на оси абсцисс должны соответствовать интервалам (для рядов динамики – периода времени);

4) нулевая линия должна резко отличаться от других параллельных линий;

5) при построении диаграммы с применением процентной шкалы нужно четко выделить линию, которая означает 100%;

6) кривая линия диаграммы должна резко отличаться от линий сетки

7) цифровые показатели размещают на графике таким образом, чтобы их можно было легко прочитать;

8) площадь графика должна быть квадратной или прямоугольной. Колонке диаграммы. На этом виде диаграммы статистические

данные изображают в виде прямоугольников (столбиков) одинаковой ширины. Располагают их вертикально или горизонтально. Величину явлений характеризует высота столбика (рис. 29).

Рис. 29. Столбиковая диаграмма динамики валового производства продукции предприятием

Колонке диаграммы применяются: 1) при сравнении между собой различных явлений; 2) для изображения явлений во времени; 3) для отображения структуры явлений.

Рассмотрим основные правила построения столбиковых диаграмм:

1) ширина столбиков и расстояние между ними должны быть одинаковыми;

2) столбики располагают от меньшего к большему или наоборот (пространственная модель);

3) в основе столбиков проводится и выделяется базовая линия;

4) указывается название и цифровые данные столбиков;

5) на шкале должны быть деления, основные из которых обозначаются цифрами;

6) указывают единицу измерения.

Разновидностью столбиковой диаграммы является гистограмма, с помощью которой изображаются вариационные ряды распределения.

Читайте также:  Как заряжать айфон без провода

Ленточные диаграммы. В отличие от столбиковых, при построении ленточных диаграмм прямоугольники, которыми изображают размер явлений, располагают не по вертикали, а по горизонтали (рис. 33). Требования, предъявляемые к построению этого вида диаграмм, аналогичные требованиям к столбиковых диаграмм.

Рис. 30. Ленточная диаграмма дневной заработной платы на предприятиях

Секторные диаграммы представляют собой круг, разделенный на секторы, величины которых соответствуют (в пропорциях) изображаемым размерам явлений. Секторные диаграммы строят для отображения структуры явлений (рис. 31).

Рис. 31. Секторная диаграмма структуры посевных площадей сельскохозяйственного предприятия

Прямоугольные диаграммы. Этот вид диаграмм величину исследуемых явлений изображает в виде площадей. Прямоугольные диаграммы применяют для изображения явлений, которые изменяются во времени, а также для сравнения различных величин в пространстве.

К прямоугольных диаграмм относятся квадратные диаграммы и "Знак Варвара".

Квадратные диаграммы используют при сравнении абсолютных величин. Для определения стороны квадрата следует добыть квадратный корень из испытуемых (диаграмованих) величин. По данным таблицы 95 проводим соответствующие расчеты, приняв масштаб 30 = 1 см. Переводим в масштабные единицы показатели, полученные после извлечения квадратного корня из величин площадей сельскохозяйственных угодий: 81,2: 30 = 2,7 см; 76,8: 30 = 2,6 см; 72,8: 30 = 2,4 см полученные числовые значения принимаются величины стороны квадрата (рис.32).

Выходные и расчетные данные для построения квадратных и круговых диаграмм

Площадь сельскохозяйственный угодий, га

Квадратный корень из размера площади

Длина радиуса, см, при масштабе 100 = 2 см

"Знак Варзара". Используется для сравнения трех связанных между собой величин. Он представляет собой прямоугольник, в

котором длина отображает величину одного явления, ширина – другого, а площадь его характеризует произведение этих в двомасштабному сравнении: один масштаб – для основы прямоугольника, второй – для его высоты.

"Знаком Варзара" одновременно сравнивается, как уже упоминалось, три связанные между собой величины, то есть диаграмовий показатель является произведением двух других. Например, если площадь прямоугольника диаграммы иллюстрирует сбор, то одна его длина – посевную площадь, вторая – высота – урожайность. Этот вид диаграммы изображен на рисунке 33.

Рис. 32. Квадратная диаграмма размеров площадей сельскохозяйственных угодий предприятия

Рис.33. Прямоугольная диаграмма "Знак Варзара".

Круговые диаграммы своей площади отражают величину исследуемых явлений. Они основываются на использовании площади круга для иллюстрации сравниваемых однородных величин. При их построении учитывается, что площади кругов относятся между собой как квадраты их радиусов. Для определения радиуса круга необходимо добыть квадратный корень из диаграмовои величины; на этой основе наметить его в определенном масштабе и по его величине описать круг. На рисунке 34 показано круговую диаграмму по данным таблицы 95.

Радиальные диаграммы. Этот вид диаграмм применяется для графического изображения явлений, которые изменяются в замкнутые календарные сроки. В основу их построения положен полярную систему координат, где по оси абсцисс принимается круг, за все ординат – его радиусы.

В зависимости от того, какой изображается цикл диаграмованого явления -замкнутая или продолжаемое (с периода в период) – различают радиальные диаграммы замкнутые и спиральные. Например, если весь цикл изменения изображаемого явления охватывает летний период, радиальную диаграмму строят по форме замкнутой.

Рис. 34. Круговая диаграмма размеров площадей сельскохозяйственных угодий

предприятия

Рис. 35. Радиальная диаграмма отработанных человеко-часов на предприятии в течение года

Если же изменение явления изучается в течение цикла диаграмованого периода (например, декабрь одного года соединяется с январем второго года и т.д.), ряд динамики изображается в виде сплошной кривой, которая визуально имеет вид спирали.

При построении радиальных диаграмм началом отсчета (полюсом) может быть центр окружность. Если за полюс принято центр круга, то радиальную диаграмму строят в такой последовательности: круг делят на столько частей, сколько периодов имеет диаграмований цикл (например, год – 12 мес.), И строят соответственно им радиусы (в данном случае – 12). Периоды размещают по часовой стрелке и на каждом радиусе в масштабном измерении откладывают отрезки (от центра круга), пропорциональны размерам явлений. Концы отрезков на радиусах соединяют, в результате чего образуется концентрическая ломаная линия. Пример замкнутой радиальной диаграммы с началом отсчета от центра окружности приведены на рис. 35.

Метод фигур – знаков. Этот метод изображения диаграмованих явлений предусматривает замену геометрических фигур рисунками, которые соответствуют содержанию статистических данных (рис. 36). То есть величина показателя изображается с помощью фигур (символов, рисунков): например, поголовье лошадей – в виде силуэта лошади, производство автомобилей – в виде рисунка автомобиля и т.п. Преимущества такого вида диаграмм перед геометрическим – их наглядность и доходчивость. Символическое изображение делает диаграмму выразительной и привлекательной.

Рис. 36. Динамика книжных изданий по вопросам рыночной экономики в районной библиотеке

Метод фигур – знаков (так называемый венский) имеет свои особенности и характеризуется более насыщенным содержанием, имеет принципиальное значение и требует соблюдения определенных правил построения таких диаграмм, а именно:

1) символы должны быть понятными сами по себе и не требовать детальных объяснений. Как правило, они изображают контур или силуэт диаграмованих объектов;

2) обеспечивать однозначность трактовки;

3) однозначность темы;

4) групувальни признаки располагают вертикально, а показатели, которые характеризуют, – горизонтально;

5) изображения знаков – символов должно соответствовать принципам хорошего рисунке;

6) исключительными считаются излишняя детализация и украшения;

7) стандартизация знаков – символов. Компоновка диаграммы должно осуществляться стандартизированными знаками – символами, изготовленными в типографии и монтируемые методом аппликации. Существуют специальные образцы таких знаков;

8) обязательность названия диаграммы и текстовых обозначений отдельных совокупностей (групп), которые изображается определенной фигурой; масштабное обозначения с указанием числового значения каждого знака – символа.

Полулогарифмическая графики. Этот вид статистического графика строится в системе координат. Числа, характеризующие диаграмоване явление, находятся в масштабе логарифмов. Логарифмы точек располагают на оси ординат, а дату явления (года) – на оси абсцисс (рис. 37).

Рис. 37. полулогарифмическая график динамики показателей дневной заработной платы на предприятии

Картограммы и картодиаграммы. Картограммы представляют собой контурную географическую карту или схему, на которой штриховкой различной густоты, точками или красками различной степени насыщенности изображена сравнительная интенсивность какого-либо показателя в пределах каждой единицы нанесенного на карту территориального деления. На картограммами, как правило, изображают явления, характеризующиеся относительными или средними величинами (например, количество работающих пенсионеров в общей численности работающих по регионам, мелиорованисть земель в процентах к общей площади, средняя заработная плата на предприятиях по районам области и т.д.) .

По способу изображения диаграмованих явлений различают картограммы точечные и фоновые.

В первых уровень явления показывают с помощью точек, расположенных на контурной карте территориальной единицы. Для наглядности изображения плотности или частоты появления определенного признака точкой обозначают одну или несколько единиц совокупности.

На фоновых картограммами штриховкой различной густоты или краской различной степени насыщенности изображают интенсивность какого-либо показателя в пределах территориальной единицы. Один из случаев картограмм показано на рисунке 38.

Рис. 38. Картограмма плотности поголовья коров на 100 га сельскохозяйственных угодий в хозяйствах района

Если на контурную карту наносятся статистические данные в виде диаграмм, получают картодиаграму. Ярким ее примером является географическая карта, на которой численность населения крупных городов изображена в виде кругов различной величины.

Кроме рассмотренных способов графического изображения исследуемых явлений, существуют и другие. Практическое их использование при отражении динамики явлений, их структуры и взаимосвязей рассмотрено в предыдущих главах.

Комментировать
18 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector