С каждым годом автомобили становятся всё более сложными и высокотехнологичными. Связанные с этим растущие требования по электропитанию, а также строгие экологические нормы приводят к поголовному распространению 48‑вольтовых электрических систем. Эксперты ожидают, что к 2025 году эта технология займёт своё место в пятой части всех проданных в мире автомобилей.
Сама по себе технология не совсем новая. Но популярность 48‑вольтовые системы набирают по двум основным причинам: в первую очередь они помогают автомобилям подстроиться под регламент вредных выбросов за счёт экономии топлива, а во вторую — обеспечивают больше энергии для новомодных автомобильных функций. Посмотрим, как эта технология работает на примере двух крупных поставщиков автокомпонентов — Delphi и Continental.
Кроме того, автопроизводители также добавляют в машину тонны новых информационно-развлекательных опций и вспомогательных систем безопасности (адаптивный круиз‑контроль, система слежения за разметкой, система мониторинга мёртвых зон). Плюс у вас подогреваются сиденья, руль и лобовое стекло. Излишне говорить, что стандартные 12‑вольтовые системы при этом находятся на грани истощения. Как раз в этот момент активизируются 48‑вольтовые системы, призванные помочь удовлетворить потребность в дополнительной бортовой сети.
Это особенно актуально для люксовых автомобилей. Bentley Bentayga, например, использует 48‑вольтовую батарею, чтобы питать электрическую систему стабилизаторов поперечной устойчивости для лучшей управляемости, а в Audi ею питается электрический нагнетатель.
Но несмотря на все преимущества 48‑вольтовых систем, 12‑вольтовый аккумулятор, питающий фары, дворники и многое другое, в ближайшее время никуда не уйдёт. Вместо того чтобы заменить текущую электрическую архитектуру полностью (как это было в 90‑х годах, когда автоиндустрия подумывала ввести 42‑вольтовые системы), перспективная 48‑вольтовая система дополняет традиционную, что по сути представляет собой так называемый «мягкий гибрид». Другими словами, электромотор и 48‑вольтовая батарея просто добавляются к ДВС и нормальной 12‑вольтовой батарее. Нечто подобное можно было наблюдать на Buick LaCrosse и Saturn Aura начала 2010‑х годов.
В основном структура мягких гибридов состоит из трёх основных компонентов: ременного стартера‑генератора или блока мотор‑генератор (MGU), преобразователя напряжения постоянного тока и аккумулятора высокого напряжения. Эти три компонента легко адаптируются к электрическим системам негибридных автомобилей. Стартер‑генератор заменяет традиционный генератор на приводе вспомогательных агрегатов спереди, а преобразователь и аккумулятор занимают небольшое количество пространства в багажнике.
Компания Continental подтверждает эту цифру, говоря о 13%‑ной экономии топлива в режиме испытаний. В реальных условиях этот показатель может достичь 21%, что является огромной выгодой для такой простой и легко реализуемой системы.
В 48‑вольтовых системах Continental и Delphi используется литий‑ионный аккумулятор размером с обувную коробку (чёрный блок на фото внизу) и ёмкостью менее 1 кВт⋅ч. Он подаёт ток на маленький 12‑вольтовый свинцово‑кислотный аккумулятор посредством расположенного в багажнике преобразователя (серебристый блок с вентилятором), который снижает напряжение для питания 12‑вольтового оборудования автомобиля.
В то же время ещё более высокое напряжение аккумулятора может предложить ещё больше возможностей, однако федеральные стандарты требуют наличия дорогостоящих экранирующих оболочек, изоляционных каналов (во многих гибридах они оранжевого цвета) и коннекторов в любой автомобильной электрической системе напряжением более 60 вольт (превышение этого показателя официально попадает в категорию «высокое напряжение»). Удерживание напряжения ниже данного порога означает, что общая стоимость мягких гибридных систем может оставаться в пределах 800‑1200 долларов. Это важно, поскольку автопроизводители готовы платить 50‑100 долларов за каждый процент экономии топлива. С 10‑15% экономии мягкие гибриды как раз вписываются в этот диапазон.
В первом случае MGU мощностью примерно 13,5 л. с. функционирует как мотор, получая ток от литий‑ионной батареи в багажнике через преобразователь, меняющий постоянный ток на переменный.
Затем он вращает бензиновый или дизельный двигатель через приводной ремень. Он либо запускает ДВС после кратковременной остановки (12‑вольтовый стартер остаётся для холодного пуска), обеспечивая ему дополнительные 135 Н⋅м для лучшего ускорения и снижая вибрации запуска, либо уменьшает нагрузку на двигатель в других стратегических ситуациях для экономии топлива.
Однако MGU работает не только как мотор, посылающий крутящий момент на коленвал. Как следует из названия, это ещё и генератор, принимающий крутящий момент для выполнения своей основной обязанности — выработки электроэнергии для 48‑вольтового аккумулятора в задней части машины. Это происходит не только тогда, когда двигатель работает и крутит ремень, но и когда двигатель выключен, а машина едет накатом или тормозит.
Работа узлов от 48 вольт вместо 12 выгоднее не только из‑за уменьшения потерь (по этой же причине человечество передаёт электроэнергию по линиям высокого напряжения), но и из‑за того, что насосы и вентиляторы работают эффективнее при более высоком напряжении. Ещё более важно то, что 48‑вольтовая система обеспечивает достаточно энергии, чтобы питать устройства, традиционно питаемые от ремня вспомогательных агрегатов.
Отцепка от двигателя таких компонентов, как водяные насосы или кондиционер, уменьшает паразитное сопротивление и позволяет этим компонентам устанавливать свои собственные рабочие циклы на основе потребностей автомобиля и клиента, а не на основе числа оборотов двигателя.
48‑вольтовое питание быстрее разогревает катализаторы в выхлопной системе дизелей, что также снижает уровень выбросов. Учитывая всё вышесказанное, мы убеждаемся, что преимущества этой системы простираются далеко за пределы 10‑15%‑ной экономии топлива.
Эксперты автоиндустрии предсказывают, что число мягких гибридов к 2025 году вырастет в 9 раз и составит 14 млн автомобилей. Это отличные новости не только для компаний Delphi и Continental, но и для потребителей, которые получат больше топливной экономичности, больше высокотехнологичных электронных опций и больше перфоманса при относительно незначительных минусах для пространства и веса.
Преобразователь из 48 в 12 вольт
1. Обзор материала о протипах
Преобразователь напряжения из 48 вольт в 12 вольт достаточно не стандартен. Обычно напряжения 48 вольт редко применяются, но вот оказалось, что в электротранспорте такие напряжения возможны. Источниками питания 48 вольт обычно являются тяговые аккумуляторы. На самом деле диапазон напряжения может изменяться от 44 вольт до 56 вольт. Применить какие-то микросхемы довольно сложно, они требуют сложного питания. Оказалось, что наиболее простое устройство получается из электронного трансформатора для галогеновых ламп, что используются в домашнем дизайне.
Первое подключение купленного электронного трансформатора к четырем аккумуляторам с напряжением питания 49 вольт показало его работоспособность. Осталось только оптимизировать схему устройства под требуемое напряжение. Т.е. сделать схему с устойчивым запуском при пониженном питании и поднять выходное напряжение устройства, дополнить его выпрямителем. На приведенных выше снимках представлены возможные электрические схемы электронных трансформаторов.
В качестве донора для дальнейшей доработки можно использовать блок питания от компьютера и материнскую плату, они содержать достаточное количество радиодеталей для любых манипуляций. Там, может быть не найдется только динистор DB3, но он и не потребуется если не делать собственный преобразователь:
Для модернизации используем наиболее простой трансформатор с электромагнитным автогенератором. Электронный трансформатор (см. ниже) работает следующим образом. Напряжение сети выпрямляется с помощью выпрямительного моста до полусинусоидального с удвоенной частотой. Элемент D6 типа DB3 в документации называется "TRIGGER DIODE”, — это двунаправленный динистор (или диак) в котором полярность включения значения не имеет и он используется здесь для запуска преобразователя трансформатора. Динистор срабатывает во время каждого цикла, запуская генерацию полумоста. Открытие динистора можно регулировать. Это можно использовать например для функции регулировки яркости подключенной лампы. Частота генерации зависит от размера и магнитной проводимости сердечника трансформатора обратной связи и параметров транзисторов, обычно составляет в пределах 30-50 кГц.
В настоящее время начался выпуск более продвинутых трансформаторов с микросхемой IR2161, которая обеспечивает как простоту конструкции электронного трансформатора и уменьшение числа используемых компонентов, так и высокими характеристиками. Использование этой микросхемы значительно увеличивает технологичность и надежность электронного трансформатора для питания галогенных ламп. Принципиальная схема приведена на первом рисунке (см.выше).
Входной резистор R1 (0,25ватт) – своеобразный предохранитель. Транзисторы типа MJE13003 прижаты к корпусу через изоляционную прокладку металлической пластинкой. Даже при работе на полную нагрузку транзисторы греются слабо. После выпрямителя сетевого напряжения отсутствует конденсатор, сглаживающий пульсации, поэтому выходное напряжение электронного трансформатора при работе на нагрузку представляет собой прямоугольные колебания 40кГц, модулированные пульсациями сетевого напряжения 50Гц. Трансформатор Т1 (трансформатор обратной связи) – на ферритовом кольце, обмотки подключенные к базам транзисторов содержат по пару витков, обмотка, подключенная к точке соединения эмиттера и коллектора силовых транзисторов – один виток одножильного изолированного провода. В ЭТ обычно используются транзисторы MJE13003, MJE13005, MJE13007. Выходной трансформатор на ферритовом Ш-образном сердечнике.
Чтоб задействовать электронный трансформатор в импульсном источнике питания, нужно подключить на выход выпрямительный мост на ВЧ мощных диодах (обычные КД202, Д245 не пойдут) и конденсатор для сглаживания пульсаций. На выходе электронного трансформатора ставят диодный мост на диодах КД213, КД212 или КД2999. Нужны диоды с малым падением напряжения в прямом направлении, способные хорошо работать на частотах порядка десятков килогерц.
Преобразователь электронного трансформатора без нагрузки нормально не работает, поэтому его нужно использовать там, где нагрузка постоянна по току и потребляет достаточный ток для уверенного запуска преобразователя ЭТ. При эксплуатации схемы надо учитывать, что электронные трансформаторы являются источниками электромагнитных помех, поэтому должен ставиться LC фильтр, предотвращающий проникновение помехи в сеть и в нагрузку.
Вот исходные данные электронного трансформатора приобретенного для конвертации:
Для устойчивого запуска устройства необходимо сделать доработку, дополнив силовой трансформатор еще одной обмоткой, но и здесь необходимо давать устройству хотя бы 10% нагрузки:
Устройство можно доработать с целью защиты от перегрузок и коротких замыканий.
Схема работает следующим образом. Короткое замыкание в лампе приведёт к значительному повышению тока через транзисторы, что приведёт к их перегреву и выходу из строя. Однако, этот ток приведёт к росту напряжения на Re. Это приведёт к открытию транзистора TRs, что будет предотвращать срабатывание диака в начале каждого цикла. Rs и Cs нужны для задержки включения транзистора, предотвращая срабатывание защиты при зажигания лампы (когда нить лампы холодная, она имеет маленькое сопротивление, что приводит к протеканию большого тока через транзисторы. Её сопротивление увеличивается с прогревом лампы и ток через транзисторы нормализуется). Диод Ds обеспечивает нормальную работу данного фильтра. Через некоторое время (несколько циклов работы) конденсатор Cs разряжается и будет не в состоянии удерживать TRs в открытом состоянии и будет предпринята попытка рестарта. Если неисправность не устранена, защита вновь сработает. Таким образом ограничивается рассеиваемая транзисторами энергия. Следует отметить, что транзисторы должны быть достаточно надёжными, чтобы выдержать работу защиты от короткого замыкания.
Предлагаемый способ работы защиты не выдерживает критики. Я имею ввиду сьем напряжения с резистора включенного в эмиттер нижнего транзистора. При величине резистора уже 3 ома, устройство не запускается. Более работоспособен вариант с трансформаторов в эмиттерной цепи. Первичная обмотка составляет два витка, вторичная 7-8 витков на ферритовом колечке размерами 10х6х6 (снимаем с материнской платы), такое же как в трансформаторе обратной связи.
К сожалению этот вид защиты от перегрузки можно использовать только при питании от источника переменного напряжения. При работе от источников постоянного тока (напряжения), какими являются к примеру аккумуляторы, запуск генерации происходит один раз — при включении, поэтому такой способ защиты не годится.
2. Поставим задачу изготовить собственный преобразователь напряжения
Для начала отрабатываем схему в макетном варианте, для удобства отладки делаем макетную плату из подручного материала.
Цель макетирования: подобрать типы транзисторов, желательно отечественного производства, подобрать намоточные параметры трансформаторов с кольцами снятыми с блоков питания и материнских плат от персональных компьютеров.
Сразу сообщаю,что экспериментальным путем определилась непригодность к использованию мощных транзисторов типа КТ829, С2335. Отлично работают КТ817Г, MJE13003, MJE13007. Последние применяются в источниках питания блоков питания компьютеров. Были опробованы транзисторы КТ815Г, они работают, но нагрев несколько выше указанных.
Ферритовые сердечники добываем в блоках питания — силовой трансформатор Тр2 (размер 27х14х10) и из материнской платы Тр1 (размер 10х6х6). Трансформаторы в современных платах закуклены компаундом, что удобно для наматывания обмоток. После каждого слоя обмоток накладываем изолирующий материал, например лакоткань, фторопластовую пленку или хотя бы изоленту. В одном из вариантов силовой трансформатор сделан из двух сложенных колец размерами 23х14х10, ниже на снимке он изображен.
Обмотку для силового трансформатора делаем из витого провода ПЭВ-2 0.5 сложенным из нескольких жилок. Первичную обмотку делаем из тройного провода, вторичную не менее 5 жилок. Длина провода около 2 метров для первичной обмотки, вторичной пропорционально меньше. Свивание удобно делать дрелью, закрепив один конец жгута проводов в тисках или привязав к дверной ручке. Не перестарайтесь с завивкой, шаг намотки не следует делать менее 7-8 мм.
Пришлось купить единственный элемент — динистор DB3. Остальные элементы нашлись в донорах. Диод КД522 обозначенный в схеме указан условно, на платах есть в изобилии импульсные диоды. Предостерегаю от применения силовых диодов. Устройство не войдет в режим генерации. Они легко отличаются по габаритным размерам.
При наладке устройства пришлось поменять местами выводы обмотки w4. При применении заведомо исправных элементов преобразователь начинает работать сразу.
Входящий предохранитель можно заменить резистором 3 ома мощностью 2 вт. Я считаю такой вариант более оптимальным в связи с тем, что при отключении нагрузки частота генерации резко возрастает на столько что транзисторы не будут успевать закрываться. При таком раскладе резистор будет служить ограничителем сквозного тока через транзисторы.
Печатная плата имеет размеры 80 х 100 мм. Транзисторы следует разместить на отдельных радиаторах или на общем радиаторе, но через изолирующие прокладки. В наших донорных устройствах имеются кремний-органические прокладочки. При их отсутствии можно воспользоваться слюдяными прокладками из магазинов "Радиокомпоненты".
Доброе время суток обитателю хабрахабра!
Довело меня увлечение электроникой до момента, когда дешевого китайского паяльника стало мало. Было принято волевое решение собрать паяльную станцию своими руками. Но вот беда, оказалось что в городе достать трансформатор на 24 вольта просто невозможно. Благодаря этому прискорбному факту и родилась статья.
В закромах нашлись несколько старых блоков питания ATX, и начался долгий и тернистый путь к получению заветных 24 вольт.
Как известно у ATX есть линия, выдающая -12 вольт с силой тока около 0,5 ампер, так почему бы её не усилить? Но первый блин, как известно, комом: при попытке запитать чудо паяльник блок питания сделал «БЗЗЗ» и ушел на покой.
Второй попыткой было решено сделать удвоитель напряжения. Но удвоителю на вход нужен переменный ток, который можно взять от трансформатора. Но, как оказалось, и этот путь не привел к успеху…
Продолжение истории под катом (осторожно: много картинок)
Из вооружения был только дешевый мультиметр, который показал, что на трансформаторе около 10 вольт переменного тока. Ну чтож, можно идти в бой! На макетке был собран удвоитель. К сожалению, его фотография сохранилась только одна, так сказать, в боевом режиме
Какого же было удивление, когда мультиметр показал на выходе все 50 вольт! Опровержением постулатов физики заниматься не захотелось, поэтому была приобретена тяжелая артиллерия в виде осциллографа. Картинка на выводах трансформатора получилась следующая
Это с пред делителем 1:10 на щупе и цена деления в 1 вольт. Оказывается трансформатор и выдает заветные 24 вольта, только очень страшной формы (не удивительно, что китайский мультиметр не справился с задачей).
Новая задача — переделать удвоитель в выпрямитель. Заодно было решено перенести всю силовую часть будущей паяльной станции в блок питания. Схема получилась вот такая
Пояснение по схеме:
Диоды D2, D4 (Шоттки 30А 60В) образуют обычный диодный мост, на вход которого приходит 24 вольта ужасной формы, а на выходе — те же 24, но постоянного (стоит заметить, что на выходе ток практически ровный!)
Стабилизатор U1 (7805) понижает напряжение до 5 вольт
Конденсаторы С1 (1000uF, 60V) и С2 (220uF, 16V) — электролиты, выполняющие роль фильтра. В теории перед выходом еще надо поставить керамику, которая бы ловила высокочастотные помехи, но она будет стоять в паяльной станции.
На этом электронная часть закончена, осталось собрать все в корпусе.
Первым делом обрезаем все провода, они должны комфортно поместиться в корпус. Провода собраны в пары, чтобы выдерживать большую нагрузку, концы смотаны и залужены.
После этого, добавляем кнопку запуска блока питания. Для запуска ATX нужно замкнуть PS_ON (зеленый провод) на землю (любой из черных).На выключатель у меня ушло 3 провода — PS_ON, GND и один из +5 (красный провод). Последний нужен для питания светодиода внутри кнопки.
Ах, да, выключатель пришлось немного модифицировать, ибо внутри стояла галогенка, рассчитанная на 220 вольт. Пришлось вытащить потроха и заменить на светодиод (5в) и резистор (511R).
К корпусу одного БП была применена грубая сила и он стал плоским (это будет дно конструкции).
На текущем этапе была собрана и запущена бета-версия вот такого вида
Срезаем все лишнее на корпусе с кулером. Так все выглядит в разобранном состоянии:
На корпусе размещаем 9 гнезд RCA и один молекс (выход для паяльной станции)
Внутри все выглядит ужасающе:
Внешне не многим лучше, но уже не так пугает:
Пришло время проверить как справляется наша «пристройка» со своими обязанностями
5 вольт (цена деления — 2 вольта, осциллограф немножко не откалиброван)
24 вольта (цена деления 1 вольт + пред делитель на щупе 1:10)
Как видно, справляется хорошо! Небольшой стресс тест в виде двухчасового кручения моторчика так же пройден успешно. наконец то можно приступать к созданию паяльной станции…
Уф, кажется все. Спасибо всем, кто осилил до конца. Буду рад критике конструкции (версии 2.0 однозначно быть) и текста.