Copyright © 2017, Taras Kovrijenko
Полное или частичное копирование текста допускается только с письменного разрешения автора.
Пролог
Хоть интернет полнится различного рода инструкциями по проверке честности lossless аудио, проверке на апконверт и т. п., я решил написать на этот счет свою инструкцию, подойдя к рассмотрению вопроса с должной основательностью и расстановкой.
Итак, перейдем непосредственно к делу.
Что будем мерить
Сперва хочу предупредить: невозможно, полагаясь лишь на программные средства (анализаторы и т.п.), с абсолютной уверенностью судить о превосходстве качества одной версии трека над другой. Имеются ввиду, например, различные раздачи на торренте, отличающиеся как источником, так и способом, которым они были закодированы. Ни одна программа не даст Вам полного понятия о звучании трека.
О чем же в данном случае можно судить? Во-первых — о частотном диапазоне анализируемого сигнала (это единственное, что можно определить точно), о его спектральном составе, ну и, как следствие (уже с той или иной вероятностью):
1. Если это lossless трек: был ли он получен из lossless источника, или же ранее был закодирован с использованием одного из lossy алгоритмов. Имеются ввиду алгоритмы, использующие психоакустическое сжатие. Сжатие с динамическим понижением разрядности (lossy WavPack, lossyWAV) скорей всего выявить не удастся, возможно, только на слух, по фоновым шумам.
2. Если это lossy: соответствует ли материал текущему своему виду, т.е., опять же, был ли источником кодирования lossless сигнал, или это апконверт. Апконвертом является любое преобразование с повышением битрейта. Например, перекодирование MP3 128 кбит/с в 320 кбит/с. Однако, осознанное перекодирование качественного AAC, OGG или MPC 200-256 кбит/с в MP3 320 кбит/с (для лучшей совместимости с устройствами воспроизведения) — случай довольно спорный, и при отсутствии других исходников даже не осуждается. Но, конечно же, при создании раздачи подобного материала, источник надо обязательно указывать.
Кроме того, для lossy (и в особенности, для LAME MP3) можно с той или иной степенью достоверности определить параметры кодирования. А определив например такой параметр, как частота срез НЧ фильтра, и сравнив его с актуальным частотным диапазоном записи, можно в некоторых случаях выявить тот самый апконверт.
Что будем использовать
1. foobar2000 — для декодирования, воспроизведения и просмотра технических характеристик музыкальных файлов. Дополнения к foobar2000: fooCDTect (оболочка к auCDTect — проверка lossless на предмет апконверта), AuSpec (удобный просмотр спектрограммы нажатием одной кнопки), MP3 Packer — просмотр специфических параметров MP3.
Примечание: дабы не устанавливать дополнительно горы декодеров и дополнений, рекомендую сразу скачать мою сборку. Альтернативы foobar2000 и дополнениям не советую, т.к. по возможностям они значительно уступают.
2. EncSpot Professional — с его помощью мы будем просматривать технические характеристики MP3 файлов.
3. Adobe Audition 2 — для просмотра спектрограмм с удобным масштабированием.
Собственно, сам процесс
Lossy
И так, возьмем в качестве примера закодированный мной Pink Floyd — Time (Pink Floyd — The Dark Side Of The Moon (AAD, Capitol CDP 7 46001 2)). Загрузим его в foobar2000 и поставим на воспроизведение:
Вверху мы видим примерную форму огибающей громкости (которая совмещена с полосой прокрутки), над ней VU Meter (аналог пикметра, но с некоторым усреднением по времени), внизу расположены остальные анализаторы:
Осциллограмма — волновая форма проигрываемого в данный момент отрезка записи.
Спектральная диаграмма (Spectrum Analyser), показывающая распределение мощности среди спектральных составляющих в данный момент времени,
пикметр, показывающий текущий уровень семпла (точнее, модуль его отклонения от нулевого положения)
Спектрограмма — аналог спектральной диаграммы, но с третей осью (время). Т.е., если мысленно выстроить спектральные диаграммы одну за одной, и глянуть на них сверху, получим спектрограмму («высота столбцов» задается яркостью цвета). Проще говоря, по горизонтали у нас время, по вертикали — линейно частота от 0 до 22 кГц, яркость — мощность спектральной составляющей.
Что мы сейчас видим на анализаторах:
— довольно высокий уровень записи (мы находимся на относительно громком участке) показывает нам пикметр
-как видно из огибающей громкости, динамический диапазон (диапазон, в котором меняется громкость фрагментов) трека довольно велик — это хорошо (для более-менее качественного оборудования).
— судя по спектральной диаграмме: наличие спектральных составляющих примерно до 20 кГц включительно, высокий уровень наиболее слышимого диапазона ВЧ (
11-16 кГц), что обычно говорит о значительной «звонкости» материала (это конечно же зависит от качества самой студийной записи и её (ре)мастеринга).
— спектрограмма подтверждает вышесказанное, но для более тщательного анализа спектра надо воспользоваться дополнительными утилитами
Теперь посмотрим на вкладку Info (справа). foobar2000 говорит нам о том, что запись имеет два канала, частоту дискретизации 44100 Гц и битрейт потока 320 кбит/с (реальный битрейт файла может немного отличаться, здесь он — 319 кбит/с). Насчет частоты: запомните, что весь музыкальный материал, выпускаемый на Audio CD, имеет частоту дискретизации 44.1 кГц, а потому музыка, имеющая семплрейт 48 кГц — это весьма подозрительно (т.к. неизвестно, каким алгоритмом и с каким качеством мог быть выполнен ресемплинг).
Далее написано, что трек был закодирован релизной версией кодера LAME 3.99 (на момент написания статьи это последняя версия). Более точное указание версии (например, 3.99.5) стандартом LAME Tag, к сожалению, не предусмотрено, однако есть один способ: надо открыть MP3 файл в текстовом редакторе и в поиске прописать «LAME» — у последней версии LAME (возможно, и в других недавних версиях) в закодированных данных периодически прописана версия — «LAME3.99.5».
А сейчас выделим трек и нажмем кнопочку RG (вверху, на панели плеера). После анализа нажмем кнопку Update File Tags. Теперь у нас появится дополнительная графа ReplayGain, где нас интересует значение Track Peak — уровень пикового семпла записи. В данном случае оно составляет 1.018077, что для MP3 (и lossy в целом) вполне нормально и не требует каких-либо действий направленных ан предотвращение клиппинга. Вообще, значения до 1.10 включительно (перегрузка до +1 dBFS) можно считать допустимыми. Подробнее о ReplayGain и громкости читайте в моей статье О понятии громкости в цифровом представлении звука и о методах её повышения
Постепенно переходим к тяжелой артиллерии. Открываем папку с треком в программе EncSpot и в контекстном меню файла жмем Lame Header. Видим следующее:
Полное описание информации отображаемой EncSpot можно почитать в отдельной статье. Здесь мы видим, опять же, что использовался кодер LAME 3.99, был применен НЧ фильтр на частоте 20.5 кГц. Качество алгоритма кодирования использовалось максимальное (Quality кратно 10), источник имел частоту дискретизации 44.1 кГц. Возвращаясь к теме частоты семплирования — очень важно, чтобы частота источника (точнее, частота потока поступившего на вход кодера) и MP3 файла совпадала. Если это не так, то был использован встроенный в LAME ресемплер, а он качеством не отличается.
Отдельно хочу сказать о параметрах Join Stereo mode и Safe Joint — для музыки сочетание этих параметров наиболее предпочтительно (JS без режима Safe допустимо только при низких битрейтах).
Идем дальше, открываем в контекстном меню файла Details.
Все фреймы конечно же имеют битрейт 320 кбит/с.
Здесь видно, что запись имеет широкую стереопанораму, различия между каналами довольно велики, а потому большинство фреймов закодированы в режиме Simple Stereo. Большинство блоков имеют тип Long, что говорит об относительно простой форме сигнала (малое количество транзиентов).
Тут стоит обратить внимание на резервуар бит — для MP3 CBR 320 он должен активно использоваться. Также хорошо, если стоят отметки Scalefac_scale и Scfsi.
А теперь можно перейти к более детальному анализу спектра. Жмем правой кнопкой на треке->Run Srviice->Open As. и открываем его через Adobe Audition 2:
Развернем окно на весь экран и уменьшим масштаб колесиком мышки:
Перед Вами просто таки характернейший для MP3 спектр: частотный диапазон составляет
20 кГц, при этом спектральная плотность, начиная с 16 кГц резко падает. Это обусловлено особенностями психоакустической модели используемой в MP3 — она просто таки нещадно вырезает большинство слабых гармоник с частотой выше 16 кГц. Таким образом MP3 (даже с высоким битрейтом) очень легко узнать по спектру: если на записи есть фоновые шумы, выше 16 кГц они вырезаются, и на этом уровне образуется такая себе полка. Хотя, при достаточно высоком уровне ВЧ (обычно в электронной музыке), они могут в большинстве своём и сохранится.
Давайте рассмотрим спектры еще для нескольких кодеков-битрейтов.
LAME 3.99.5, VBR V2:
Здесь видно еще более жесткое обращение с ВЧ (хотя на слух это обычно неотличимо).
LAME 3.99.5, CBR 128 kbps (-q 0):
При 128 кбит/с частоты выше 16 кГц практически всегда отсутствуют, а НЧ фильтр установлен на 17000 Гц (ширина фильтра по умолчанию — 5%, так что спад начинается с 16.15 кГц). Вдобавок здесь спектр явно прорежен уже даже в районе 8 кГц, а то и ниже, в итоге спектрограмма начинает чем-то походить на решето.
Fraunhofer MP3 Encoder, CBR 320 kbps (highest, join stereo):
Как видите, битрейт 320, а по спектру скорее похож на VBR V2 (
200 кбит/с). Кстати, это тот случай, когда результаты для спектрограммы совпадают с результатами прослушивания — качество кодера FhG заметно хуже LAME (за исключением CBR 128 кбит/с — здесь результаты прослушивания весьма спорные).
Как я уже говорил, сравнивая значение Lowpass Filter из EncSpot с фактической шириной спектра материала, можно судить о «честности» данного рипа (не апконверт). Тут же приведу соответствие популярных пресетов и стандартных частот среза для последней версии LAME:
CBR 320 — 20500 Гц
CBR 256 — 19700 Гц
CBR 192 — 18600 Гц
CBR 160 — 17500 Гц
CBR 128 — 17000 Гц
VBR V0 — 22100 Гц
VBR V2 — 18500 Гц
Если ширина спектрального диапазона не соответствует данному значению, это может говорить об апконверте. Однако, здесь довольно много «но» — ширина зависит от версии кодера, настроек (есть настройка, меняющая значение предельной частоты), самого материала в конце концов.
И последний штрих — конечно же MP3 Packer. Эта программка покажет нам, насколько эффективно сжат MP3 файл (чисто математически). Кликаем по треку правой кнопкой, выбираем Run service->MP3 Info. Видим окно:
Тут нас прежде всего интересует пункт Minimum bitrate possible — он показывает нам, какого битрейта можно достичь при перепаковке фреймов данного CBR файла в VBR фреймы (без потерь качества). Сравнив это значение с актуальным битрейтом, можно судить об эффективности сжатия. Это расхождение обычно связано с нерациональным использованием резервуара бит старыми версиями LAME. Приемлемыми можно считать отклонения до 10 кбит/с включительно (310 кбит/с для актуальных 320 кбит/с), если расхождения больше — это косвенно может говорить о низком качестве кодирования. Также обратите внимание на значение Largest frame uses (kbps) — оно указывает пиковый битрейт для трека с учетом битов из резервуара. Большое значение (>400) говорит об эффективном использовании резервуара и сложности отдельных фрагментов трека.
Теперь, что касается современных кодеров (AAC, OGG Vorbis, Musepack). Они обладают более гибкими алгоритмами и не имеют такой статичной полки на 16 кГц, как MP3 (она у них динамически перемещается, в зависимости от целевого битрейта/качества), а на высоких битрейтах (>300 кбит/с) могут быть на глаз (не говоря уже о «на слух») неотличимы от lossless (если конечно не сравнивать непосредственно со спектром источника). Так что здесь ситуация посложнее, особенно если взять такой продвинутый формат как Musepack (MPC) — он работает по несколько другому принципу, чем MP3, AAC и Vorbis. Это сказывается как на спектральном отображении, так и на звучании. Например, тот же фрагмент, MPC q 6 (
Преимущество перед LAME MP3 VBR V2 — очевидное, и, к тому же, ощутимое на слух. Сохранены практически все составляющие до 18 кГц (этого диапазона обычно бывает достаточно даже людей с «идеальным» слухом), а пики достигают и 20. К тому же этот кодер практически не страдает от пре-эхо — главной проблемы психоакустического lossy кодирования.
А теперь взглянем на спектры AAC и OGG Vorbis.
QuickTime AAC True VBR 127 (
А теперь, для сравнения, спектр оригинала :
Как видите, оба кодека охраняют весь частотный диапазон, а QAAC даже практически не урезает спектр фоновых шумов. Согласитесь: довольно трудно догадаться, что спектр QAAC принадлежит lossy источнику. А если бы на записи еще не было фоновых шумов — это не смог сделать никто (даже специальная программа). Впрочем, и на слух этот метод кодирования остается (по крайней мере, для меня) лучшим.
Касаемо определения параметров кодирования AAC, OGG и MPC — здесь инструментарий довольно скромный. Практически всю доступную информацию можно найти на вкладке Properties в foobar2000.
Lossless
О спектрах мы уже говорили, с характерными особенностями спектра MP3 (и других кодеров) Вы уже знакомы, а потому, обнаружив их в спектре lossless трека, уже сможете сделать соответствующие выводы. Но, что касается спектра апконвертов — один очень важный момент. Большинство lossless кодеров не принимают на вход PCM с плавающей точкой, а если источником является lossy, в нем с большой вероятностью присутствуют фрагменты с уровнем выходящим за 0 dBFS. После преобразования в фиксированную точку, так как «умникам», клепающим lossless из MP3, лимитирование сделать мозгов не хватает, мы получаем срезы, а прямоугольные срезы содержат полный спектр частот. В итоге на спектрограмме полученного трека мы будем видеть вертикальные полосы, простирающиеся аж до 22.05 кГц (при чем сама запись обычно уложена в диапазон до 20 кГц). Вот пример такого безобразия:
Завидев это дело, можете смело расстреливать автора раздачи из реактивного гранатомета.
Ну а теперь можно смело перейти к автоматическому анализу.
Здесь всё просто: выделяете lossless треки, нажимаете третью с конца кнопку на панели моего foobar2000 и через несколько минут видите что-нибудь эдакое:
Я специально выделил кроме lossless (TAK) еще и закодированные ранее (для получения спектрограмм выше) lossy треки — чтобы показать, насколько хорошо программа обнаруживает lossy кодирование. «95% MPEG» можно интерпретировать как «скорее всего, имело место lossy кодирование». «CDDA 100%» — означает, что материал с очень большой вероятностью (конечно не 100 %, но 99 уж точно) не был подвергнут lossy кодированию. Обмануть эту программу удается только Musepack на высоком битрейте (и то редко) или lossyWAV.
Честно говоря, программа при анализе фактически руководствуется теми же критериями, что и мы при рассмотрении спектрограммы — поиск резкого спада плотности спектра, той самой «полки» — а потому, её выводы практически всегда совпадают с заключением человека с наметанным глазом, сделанным по спектрограмме.
Целостность
Также очень важно проверять треки на наличие ошибок. Для этого выделите их в foobar2000, нажмите на выделенном правую кнопку мыши и выберите из раскрывшегося списка Utils->Verify Integrity. При наличии ошибок в файлах формата MP3 foobar2000 может их исправить. Если Вы увидите ошибку вроде «Reported length is inaccurate. », выделите треки для которых отобразилась данная ошибка, нажмите правую кнопку и выберите Utils->Fix VBR MP3 Header, после обработки проверьте трек еще раз, ошибка должна отсутствовать. Если при проверке Вы наблюдаете ошибку вида «MPEG Stream error. », её можно исправить с помощью опции Utils->Rebuild MP3 Stream. После выполнения операции исправления ошибки не забывайте повторно проверять треки.
Для других lossy форматов, а также lossless исправить ошибки в foobar2000 нельзя, но проверить всё равно стоит.
Das Ende
В общем, по теме — это всё, чем я хотел с Вами поделиться. Если есть вопросы, обращайтесь, пишите — помогу разобраться.
Ссылки по теме
Информация от спонсора
Газгольдер.ру: автономные системы снабжения сжиженным газом, автономная газификация. Общепризнанный лидер в отрасли, стоявший в России у истоков её основания. Вам предоставляется широчайший спектр услуг по газификации, в т.ч. гарантийное и сервисное обслуживание. Компания работает как с частными, так и с юридическими лицами. Стоимость автономной газификации Вы можете узнать на сайте компании (по ссылке выше).
Например когда я запускаю в Аимпе Мр3 файл, в окне воспроизведения пишется битрейт записи,к примеру 320kbps . Это хорошее качество или плохое?
Вообще как по этой цифре понять качество,чем больше тем лучше?Или обратная зависимость?
Просветите.Хочется музыку послушать в хорошем качестве)
ВОТ ТАК и ещё ВОТ ТАК ВОТ и слушать много качественной музыки на соответствующей аппаратуре!
Если у тебя хорошая Hi-Fi аппаратура, либо качественные накладные наушники то вот,
оцени самое лучшее студийное звучание известнейшей песни из моей коллекции Savage • Only You — это рип с виниловой пластинки альбома " Tonight " 1984 года, по качеству и теплоте звука и рядом с CD даже не стоит! !
Поначалу может показаться немного необычным звук, но если не тугоух, то огромную разницу не в пользу CD сразу же заметишь! !
Что влияет на качество звучания цифровых записей?
Мой дедушка слушал граммофон. Молодость отца прошла под музыку, доносившуюся из динамика катушечного магнитофона. На мою молодость пришелся расцвет и закат кассетных магнитофонов. Мой сын растет в эру цифрового звука. Чтобы не отставать от времени, и обеспечить сына хорошим «звуком», решил разобраться, от чего зависит качество воспроизведения цифрового аудио сигнала.
Пообщался с друзьями меломанами. Провел информационный поиск в Интернете. В итоге пришел к выводу, что качественного звучания в цифровую эру можно добиться, если правильно выбрать 7 основных элементов современных музыкальных центров:
- формат, в котором записана музыка;
- проигрыватель;
- цифро-аналоговый преобразователь;
- усилитель;
- акустику;
- кабели;
- питание.
Поделюсь ниже своими наблюдениями и выводами по поводу достижения качественного звучания записей в цифровых форматах.
Как может звучать цифра?
Лирическое отступление, экспертам можно не читать.
В двух словах объясню, откуда берется звук в цифровом формате. В процессе звукозаписи микрофон преобразует механические колебания (собственно звук) в аналоговый электрический сигнал. Аналоговый сигнал в самом общем случае похож на синусоиду, которая всем нам знакома со времен средней школы. В эру аналогового звука именно этот сигнал записывался на различные носители и затем воспроизводился.
С развитием микропроцессорной техники появилась возможность записывать и хранить аудиоинформацию в цифровых форматах. Получают эти форматы с помощью процесса аналого-цифрового преобразования (АЦП).
В ходе АЦП аналоговый сигнал (нашу синусоиду из средней школы) преобразуют в дискретный (проще говоря, разрезают на части). На следующем этапе дискретный сигнал квантуют, т.е. каждому получившемуся отрезку синусоиды сопоставляют цифровое значение. На третьем этапе квантованный сигнал оцифровывают, т.е. кодируют в виде последовательности 0 и 1. Применительно к цифровой звукозаписи оцифровке подвергаются сведения об амплитуде и частоте звука.
Как хранить хорошее звучание?
Для записи и хранения цифровой аудиоинформации применяют цифровые аудиоформаты. Под аудиоформатом понимают набор требований к представлению звуковых данных в цифровом виде.
При рассуждении о качестве звучания цифровые форматы делят на 3 категории:
- Форматы без дополнительного сжатия (CDDA, DSD, WAV, AIFF и др.);
- Форматы, сжатые без потери качества (FLAC, WavPack, ADX и др.);
- Форматы, в которых применено сжатие с потерями (MP3, AAC, RealAudio и др.).
Звук высокого качества получается при воспроизведении музыки, сохраненной в форматах из первой и второй категорий. В форматах третьей категории, для уменьшения объема данных, намеренно исключают часть информации. Например, информацию о скрытых частотах.
Скрытыми называют частоты, лежащие за пределами диапазона восприятия среднестатистического человека: 20 Гц – 22 кГц. Для аудиофилов этот диапазон в силу индивидуальных психофизиологических особенностей бывает шире.
Для комплектации домашней аудиотеки следует выбирать записи, сохраненные в файлах с расширениями:
- *.wav, *.dff, *.dsf, *.aif, *.aiff – это файлы со звуком без сжатия;
- *.mp4, *.flac, *.ape, *.wma – это наиболее распространенные файлы со звуком, сжатым без потерь.
Из истории. Говорят, что самые первые опыты по сохранению звука проводили еще древние греки. Они пытались сохранить звук в амфорах. Выглядело это примерно так: в амфору произносили слова и быстро её закупоривали. Увы, не одной такой записи не дошло до наших дней.
Проигрыватель – поиск беспроигрышного решения
Выбор проигрывателя нужно начинать с понимания, в каком виде будет формироваться домашняя аудиотека. Можно по старинке покупать компакт-диски или перейти к приобретению любимой музыки через Интернет. Последний вариант имеет два весомых преимущества. Он компактен и экологичен:
- Не встает вопрос о месте в квартире для хранения компакт дисков.
- Не нужно выбрасывать неисправные диски в мусор.
Определились, как покупать музыку? Отлично! Если будете покупать диски – Вам нужен проигрыватель компакт-дисков. Если предпочитаете покупки через Интернет – ищите проигрыватель на жестком диске или флешпамяти. Не определились? Отлично! Ищите универсальный проигрыватель. На таком можно и диски, и файлы, купленные через сеть, послушать.
Естественно, можно превратить в проигрыватель и персональный компьютер. Но этот вариант удобен тогда, когда компьютер действительно персональный. Перспектива конкуренции за место у клавиатуры и возможные конфликты существенно снизят удовольствие от прослушивания музыки в хорошем качестве.
При выборе проигрывателя особое внимание обратите на доступные разъемы. Чем больше вариантов разъемов, тем проще будет выбрать другие элементы музыкального центра.
ЦАП! И цифра превращается … в аналоговый сигнал
Проигрыватель прочитал цифровую последовательность с компакт-диска или из файла. Теперь наступает самый математический момент воспроизведения цифрового звука. Цифровой сигнал преобразуется в аналоговый. Происходит эта матемагия в ЦАП, или цифро-аналоговом преобразователе.
ЦАП может быть встроен в проигрыватель или реализован в виде отдельного блока. Задаваясь целью получить звук высокого качества, нужно остановить свой выбор на втором варианте. Встроенный преобразователь обычно уступает отдельному по качеству. Внешний ЦАП имеет собственный блок питания, встроенный запитан от общего с проигрывателем источника. При использовании внешнего ЦАП на его работу почти не влияют помехи от проигрывателя и усилителя.
Внешний ЦАП по схемотехническим решениям реализуют в 4-х основных вариантах:
- Широтно-импульсный модулятор;
- Схема передискретизации;
- Взвешивающего типа;
- Лестничного типа, или цепная R-2R схема.
При таком богатстве выбора для достижения звучания высокого качества вариант R-2R оказывается безальтернативным. За счет специальной схемы, реализованной на прецизионных сопротивлениях, в ЦАП лестничного типа удается достичь очень высокой точности преобразования.
При выборе внешнего цифро-аналогового преобразователя следует обратить внимание на две основных характеристики:
- Разрядность. Хорошо, если у выбранной модели она равна 24 битам.
- Максимальная частота дискретизации. Очень хорошее значение 96 кГц, великолепное 192 кГц.
Усилитель – лучший друг акустической системы
Для достижения качественного звучания вместе с акустической системой нужно покупать усилитель. По сути эти два элемента аудиоцентра работают как одно целое.
Немного теории. Усилитель это прибор, который предназначен для повышения мощности аналоговых сигналов звуковой частоты. Он позволяет согласовать сигнал, полученный с ЦАП, с возможностями акустики. По типу силовых элементов усилители мощности разделяют на ламповые и транзисторные. В каждой группе присутствуют приборы с обратной связью и без обратной связи. Введение обратной связи направлено на исправление искажений, которые вносит в усиливаемый сигнал сам усилитель. Однако при получении звука без искажений приходится смириться с потерей части динамического диапазона звука.
С точки зрения подбора тандема «акустика – усилитель» важна классификация последнего по типу характеристики силового элемента. Существуют усилители с триодной и пентодной характеристикой. Пентодные усилители бывают в ламповом и транзисторном исполнении. Они подходят для полочных или простых напольных акустических систем. Для чувствительной напольной акустики с диапазоном от 90 дБ лучше подбирать усилители с триодной характеристикой.
Еще до покупки нужно постараться добиться идеального баланса между возможностями усилителя и акустики. Лучше всего прямо в магазине попросить консультантов погонять выбранную акустическую систему совместно с разными усилителями. Выбрать нужно тот комплект, который больше понравился Вашему уху.
Акустика: три дороги, три пути
Что такое хорошая акустическая система – это самый запутанный вопрос. Выбор акустики зависит от индивидуальных особенностей слуха человека, параметров помещения, в котором будет размещена система, и финансовых возможностей. В этой системе с тремя переменными найти золотую середину очень непросто. Поэтому рассмотрим три принципиальных варианта решения задачи.
Решение первое. Бюджетное. Можно оснастить домашний аудиоцентр «полочными» акустическими системами. Эти небольшие по размеру системы можно разместить на книжной полке. Они удобны для маленького помещения. В силу малых размеров это еще и недорогой вариант. Существенный минус такого решения состоит в том, что «полочная» акустика не даст нормального звучания басов.
Решение второе. Роскошное. Если позволяют габариты помещения и финансовые возможности, то можно купить напольную акустику. Эта система, благодаря размерам, может содержать низкочастотный динамик большого диаметра. Значит, есть шансы насладиться хорошими басами.
Решение третье. «Золотой» компромисс. Это решение подойдет для больших и маленьких помещений и приемлемо по цене. Состоит оно в приобретении сабвуфера и сателлитов. Сабвуфер отвечает за качественное воспроизведение басов. На стеллитах идет воспроизведение высоких частот.
При выборе акустики не стоит следовать никаким советам. Нужно опираться только на свой собственный слух. Еще нужно быть готовым к тому, что звучание акустики в магазине и в вашей квартире будет различным.
Кабели – краткость, сестра таланта
Выбор соединительных проводников – это вопрос, который неизбежно придется решать для достижения качественного звука. О влиянии кабеля на звучание написано много статей. Единственное, в чем авторы достигли единства, это в требовании к длине кабеля. Чем короче, тем лучше – вот золотое правило выбора соединительных кабелей.
Немного теории. Кабели подразделяют на межблочные и акустические. Межблочные служат для соединения блоков аудиоцентра, например проигрывателя и ЦАП. Акустическими кабелями осуществляется подключение акустической системы к усилителю мощности.
По типу материала проводника кабели разделяют на OFC, OCC и композитные. OFC – это кабели из бескислородной меди, полученные методом протяжки. OCC – это кабели из монокристаллической меди, полученной напрямую из расплава. Композитные – это кабели, в которых проводник состоит из нескольких материалов.
Если вы задались целью создать идеальный аудиоцентр из блоков разных производителей, постарайтесь использовать минимальные по длине соединительные кабели. И будьте готовы экспериментировать для достижения идеального качества звучания.
Хорошее питание – залог комфортного звучания
Наконец наш домашний комплекс для качественного воспроизведения музыки в цифровом формате собран. Теперь остался сущий пустяк. Для хорошей аппаратуры нужно качественное электропитание. Если самые дорогие «брендовые» усилители, ЦАП, проигрыватели запитать от общей сети, то ни о каком качественном звуке речи быть не может. Загрязненное помехами напряжение убьет все усилия по подбору и покупке качественных блоков для аудиоцентра.
Организуйте питание каждого блока отдельным кабелем. Кабели нужно подключить непосредственно к распределительному щитку на вводе в жилище. Розетки для подключения должны обеспечивать высокую степень фиксации штепселя. Разумно использовать сетевой фильтр, он сделает питание, а, следовательно, и звучание более чистым.