No Image

Как найти размерность линейной оболочки

СОДЕРЖАНИЕ
11 445 просмотров
16 декабря 2019

Найти базис и размерность линейной оболочки векторов

Пример1)

Найти базис и размерность линейной оболочки векторов a1=(1, 2, 3, 4), a2=( -1, 3, 2, 1),

a3=(- 1, 8, 7, 6), a4=(1, 4, -2, 5).

По определению базис максимальный набор линейно независимых векторов.

А) проверим, что вектора < a1, a2,a3, a4>–линейно независимы?

*a1+ *a2+ *a3+ *a4=0

=

С помощью элементарных преобразований приводим матрицу к треугольному виду:

Выписываем решение….. Получаем, что вектора линейно зависимы значит вектора < a1, a2,a3, a4>не базис.

В) Из набор вектора < a1, a2,a3, a4>уберем один вектор, например a3.Проверим, что вектора < a1, a2, a4>образуют базис.

Дата добавления: 2015-09-07 ; просмотров: 2766 . Нарушение авторских прав

Сайт о разделе высшей математики — линейной алгебре

п.5. Вычисление ранга матрицы и нахождение базиса линейной оболочки ее системы строк (столбцов).

Для вычисления ранга матрицы часто применяют метод Гаусса приведения матрицы к ступенчатому виду. Метод Гаусса основан на элементарных преобразованиях строк матрицы, которые, как мы уже знаем, не изменяют ранга системы строк, а значит не изменяют и ранга матрицы.

Таким образом, ранг данной матрицы равен рангу получившейся после преобразований ступенчатой матрицы. В свою очередь, ранг ступенчатой матрицы легко вычисляется, так как легко увидеть ее максимальный ненулевой минор и его порядок.

Пример. Вычислить ранг матрицы и найти базис и размерность линейной оболочки натянутой на ее столбцы.

1-й шаг: умножим первую строку на 2 и прибавим ко второй строке:

;

2-й шаг: прибавим к третьей строке первую, умноженную на (–3):

;

3-й шаг: прибавим ко второй строке 3-ю, умноженную на (–1):

;

4-й шаг: умножаем вторую строку на (–3) и прибавляем к третьей строке:

.

Ранг последней матрицы равен 3, так как в первых трех столбцах стоит ненулевой минор 3-го порядка

, а миноров 4-го порядка не существует.

Приведенные преобразования не изменяют величину определителя, построенного на первых трех столбцах матрицы А, поэтому он отличен от нуля и, следовательно, его столбцы линейно независимые и образуют максимальную линейно независимую подсистему системы столбцов матрицы А. Отсюда можно сделать вывод, что первые три столбца матрицы А образуют базис линейной оболочки натянутой на столбцы матрицы А, т.е. и .

Ответ: , – базис линейной оболочки , .

Определение. Любой ненулевой минор матрицы А максимального порядка называют базисным минором матрицы А.

Из этого определения следует, что порядок базисного минора матрицы А равен рангу матрицы А.

Замечание. Максимальную линейно независимую подсистему системы строк матрицы, которая образует базис линейной оболочки системы строк матрицы, мы будем, для краткости, называть базисными строками матрицы. И то же самое для столбцов.

Из приведенного примера можно сделать вывод, что если, вычисляя ранг матрицы, мы не переставляем строки и столбцы матрицы, то найдя базисный минор матрицы и определив номера строк и столбцов на которых он построен, мы, тем самым, находим номера базисных строк и столбцов исходной матрицы.

Так в примере, базисный минор матрицы А построен на первых трех строках и первых трех столбцах, следовательно именно они и образуют базисы системы строк и столбцов матрицы А.

Определения размерности и базиса

Линейное пространство [math]V[/math] называется n-мерным , если в нем существует система из [math]n[/math] линейно независимых векторов, а любая система из большего количества векторов линейно зависима. Число [math]n[/math] называется размерностью (числом измерений) линейного пространства [math]V[/math] и обозначается [math]operatornameV[/math] . Другими словами, размерность пространства — это максимальное число линейно независимых векторов этого пространства. Если такое число существует, то пространство называется конечномерным. Если же для любого натурального числа п в пространстве [math]V[/math] найдется система, состоящая из [math]n[/math] линейно независимых векторов, то такое пространство называют бесконечномерным (записывают: [math]operatornameV=infty[/math] ). Далее, если не оговорено противное, будут рассматриваться конечномерные пространства.

Базисом n-мерного линейного пространства называется упорядоченная совокупность [math]n[/math] линейно независимых векторов ( базисных векторов ).

Теорема 8.1 о разложении вектора по базису. Если [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] — базис n-мерного линейного пространства [math]V[/math] , то любой вектор [math]mathbfin V[/math] может быть представлен в виде линейной комбинации базисных векторов:

и притом единственным образом, т.е. коэффициенты [math]mathbf_1, mathbf_2,ldots, mathbf_n[/math] определяются однозначно. Другими словами, любой вектор пространства может быть разложен по базису и притом единственным образом.

Действительно, размерность пространства [math]V[/math] равна [math]n[/math] . Система векторов [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] линейно независима (это базис). После присоединения к базису любого вектора [math]mathbf[/math] , получаем линейно зависимую систему [math]mathbf_1,mathbf_2,ldots,mathbf_n, mathbf[/math] (так как это система состоит из [math](n+1)[/math] векторов n-мерного пространства). По свойству 7 линейно зависимых и линейно независимых векторов получаем заключение теоремы.

Следствие 1. Если [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] — базис пространства [math]V[/math] , то [math]V=operatorname (mathbf_1,mathbf_2, ldots,mathbf_n)[/math] , т.е. линейное пространство является линейной оболочкой базисных векторов.

В самом деле, для доказательства равенства [math]V=operatorname (mathbf_1,mathbf_2, ldots, mathbf_n)[/math] двух множеств достаточно показать, что включения [math]Vsubset operatorname(mathbf_1,mathbf_2, ldots,mathbf_n)[/math] и [math]operatorname(mathbf_1,mathbf_2,ldots,mathbf_n)subset V[/math] выполняются одновременно. Действительно, с одной стороны, любая линейная комбинация векторов линейного пространства принадлежит самому линейному пространству, т.е. [math]operatorname(mathbf_1,mathbf_2,ldots,mathbf_n)subset V[/math] . С другой стороны, любой вектор пространства по теореме 8.1 можно представить в виде линейной комбинации базисных векторов, т.е. [math]Vsubset operatorname(mathbf_1,mathbf_2,ldots,mathbf_n)[/math] . Отсюда следует равенство рассматриваемых множеств.

Следствие 2. Если [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] — линейно независимая система векторов линейного пространства [math]V[/math] и любой вектор [math]mathbfin V[/math] может быть представлен в виде линейной комбинации (8.4): [math]mathbf=v_1mathbf_1+ v_2mathbf_2+ldots+v_nmathbf_n[/math] , то пространство [math]V[/math] имеет размерность [math]n[/math] , а система [math]mathbf_1,mathbf_2, ldots,mathbf_n[/math] является его базисом.

В самом деле, в пространстве [math]V[/math] имеется система [math]n[/math] линейно независимых векторов, а любая система [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] из большего количества векторов n)">[math](k>n)[/math] линейно зависима, поскольку каждый вектор из этой системы линейно выражается через векторы [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] . Значит, [math]operatorname V=n[/math] и [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] — базис [math]V[/math] .

Теорема 8.2 о дополнении системы векторов до базиса. Всякую линейно независимую систему [math]k[/math] векторов n-мерного линейного пространства [math](1leqslant k можно дополнить до базиса пространства.

В самом деле, пусть [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] — линейно независимая система векторов n-мерного пространства [math]V

(1leqslant k . Рассмотрим линейную оболочку этих векторов: [math]L_k=operatorname(mathbf_1,mathbf_2,ldots, mathbf_k)[/math] . Любой вектор [math]mathbfin L_k[/math] образует с векторами [math]mathbf_1,mathbf_2,ldots, mathbf_k[/math] линейно зависимую систему [math]mathbf_1,mathbf_2,ldots,mathbf_k,mathbf[/math] , так как вектор [math]mathbf[/math] линейно выражается через остальные. Поскольку в n-мерном пространстве существует [math]n[/math] линейно независимых векторов, то [math]L_k
e V[/math] и существует вектор [math]mathbf
_in V[/math] , который не принадлежит [math]L_k[/math] . Дополняя этим вектором линейно независимую систему [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] , получаем систему векторов [math]mathbf_1,mathbf_2,ldots,mathbf_k,mathbf_[/math] , которая также линейно независимая. Действительно, если бы она оказалась линейно зависимой, то из пункта 1 замечаний 8.3 следовало, что [math]mathbf_in operatorname
(mathbf_1, mathbf_2, ldots,mathbf_k)=L_k[/math] , а это противоречит условию [math]mathbf_
otin L_k[/math] . Итак, система векторов [math]mathbf
_1,mathbf_2,ldots, mathbf_k, mathbf_[/math] линейно независимая. Значит, первоначальную систему векторов удалось дополнить одним вектором без нарушения линейной независимости. Продолжаем аналогично. Рассмотрим линейную оболочку этих векторов: [math]L_=operatorname
(mathbf_1, mathbf_2,ldots, mathbf_k, mathbf_)[/math] . Если [math]L_=V[/math] , то [math]mathbf_1,mathbf_2, ldots,mathbf_k, mathbf_[/math] — базис и теорема доказана. Если [math]L_
e V[/math] , то дополняем систему [math]mathbf
_1,mathbf_2, ldots,mathbf_k,mathbf_[/math] вектором [math]mathbf_
otin L_[/math] и т.д. Процесс дополнения обязательно закончится, так как пространство [math]V[/math] конечномерное. В результате получим равенство [math]V=L_n=operatorname
(mathbf_1,ldots,mathbf_k,ldots,mathbf_n)[/math] , из которого следует, что [math]mathbf_1,ldots,mathbf_k,ldots,mathbf_n[/math] — базис пространства [math]V[/math] . Теорема доказана.

1. Базис линейного пространства определяется неоднозначно. Например, если [math]mathbf_1,mathbf_2, ldots, mathbf_n[/math] — базис пространства [math]V[/math] , то система векторов [math]lambda mathbf_1,lambda mathbf_2,ldots,lambda mathbf_n[/math] при любом [math]lambda
e0[/math] также является базисом [math]V[/math] . Количество базисных векторов в разных базисах одного и того же конечномерного пространства, разумеется, одно и то же, так как это количество равно размерности пространства.

2. В некоторых пространствах, часто встречающихся в приложениях, один из возможных базисов, наиболее удобный с практической точки зрения, называют стандартным.

3. Теорема 8.1 позволяет говорить, что базис — это полная система элементов линейного пространства, в том смысле, что любой вектор пространства линейно выражается через базисные векторы.

4. Если множество [math]mathbb[/math] является линейной оболочкой [math]operatorname(mathbf_1,mathbf_2,ldots,mathbf_k)[/math] , то векторы [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] называют образующими множества [math]mathbb[/math] . Следствие 1 теоремы 8.1 в силу равенства [math]V=operatorname (mathbf_1,mathbf_2,ldots,mathbf_n)[/math] позволяет говорить, что базис — это минимальная система образующих линейного пространства [math]V[/math] , так как нельзя уменьшить количество образующих (удалить хотя бы один вектор из набора [math]mathbf_1, mathbf_2,ldots,mathbf_n[/math] ) без нарушения равенства [math]V=operatorname( mathbf_1,mathbf_2,ldots,mathbf_n)[/math] .

5. Теорема 8.2 позволяет говорить, что базис — это максимальная линейно независимая система векторов линейного пространства, так как базис — это линейно независимая система векторов, и ее нельзя дополнить каким-либо вектором без потери линейной независимости.

6. Следствие 2 теоремы 8.1 удобно применять для нахождения базиса и размерности линейного пространства. В некоторых учебниках оно берется за определение базиса, а именно: линейно независимая система [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] векторов линейного пространства называется базисом, если любой вектор пространства линейно выражается через векторы [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] . Количество базисных векторов определяет размерность пространства . Разумеется, что эти определения эквивалентны приведенным выше.

Примеры базисов линейных пространств

Укажем размерность и базис для примеров линейных пространств, рассмотренных выше.

1. Нулевое линейное пространство [math]<mathbf>[/math] не содержит линейно независимых векторов. Поэтому размерность этого пространства полагают равной нулю: [math]dim<mathbf>=0[/math] . Это пространство не имеет базиса.

2. Пространства [math]V_1,,V_2,,V_3[/math] имеют размерности 1, 2, 3 соответственно. Действительно, любой ненулевой вектор пространства [math]V_1[/math] , образует линейно независимую систему (см. пункт 1. замечаний 8.2), а любые два ненулевых век тора пространства [math]V_1[/math] коллинеарны, т.е. линейно зависимы (см. пример 8.1). Следовательно, [math]dim=1[/math] , а базисом пространства [math]V_1[/math] является любой ненулевой вектор. Аналогично доказывается, что [math]dim=2[/math] и [math]dim=3[/math] . Базисом пространства [math]V_2[/math] служат любые два неколлинеарных вектора, взятые в определенном порядке (один из них считается первым базисным вектором, другой — вторым). Базисом пространства [math]V_3[/math] являются любые три некомпланарных (не лежащих в одной или параллельных плоскостях) вектора, взятые в определенном порядке. Стандартным базисом в [math]V_1[/math] является единичный вектор [math]vec[/math] на прямой. Стандартным базисом в [math]V_2[/math] считается базис [math]vec,,vec[/math] , со стоящий из двух взаимно перпендикулярных единичных векторов плоскости. Стандартным базисом в пространстве [math]V_3[/math] считается базис [math]vec,,vec,,vec[/math] , составленный из трех единичных попарно перпендикулярных векторов, образующих правую тройку.

3. Пространство [math]mathbb^n[/math] содержит не более, чем [math]n[/math] , линейно независимых векторов. В самом деле, возьмем [math]k[/math] столбцов из [math]mathbb^n[/math] и составим из них матрицу размеров [math]n imes k[/math] . Если n">[math]k>n[/math] , то столбцы линейно зависимы по теореме 3.4 о ранге матрицы. Следовательно, [math]dim<mathbb^n>leqslant n[/math] . В пространстве [math]mathbb^n[/math] не трудно найти п линейно независимых столбцов. Например, столбцы единичной матрицы

линейно независимы. Следовательно, [math]dim<mathbb^n>=n[/math] . Пространство [math]mathbb^n[/math] называется n-мерным вещественным арифметическим пространством . Указанный набор векторов считается стандартным базисом пространства [math]mathbb^n[/math] . Аналогично доказывается, что [math]dim<mathbb^n>=n[/math] , поэтому пространство [math]mathbb^n[/math] называют n-мерным комплексным арифметическим пространством .

4. Напомним, что любое решение однородной системы [math]Ax=o[/math] можно представить в виде [math]x=C_1varphi_1+C_2varphi_2+ldots+C_varphi_[/math] , где [math]r=operatornameA[/math] , a [math]varphi_1,varphi_2,ldots,varphi_[/math] — фундаментальная система решений. Следовательно, [math]=operatorname (varphi_1,varphi_2,ldots,varphi_)[/math] , т.е. базисом пространства [math][/math] решений однородной системы служит ее фундаментальная система решений, а размерность пространства [math]dim=n-r[/math] , где [math]n[/math] — количество неизвестных, а [math]r[/math] — ранг матрицы системы.

5. В пространстве [math]M_<2 imes3>[/math] матриц размеров [math]2 imes3[/math] можно выбрать 6 матриц:

которые линейно независимы. Действительно, их линейная комбинация

равна нулевой матрице только в тривиальном случае [math]alpha_1=alpha_2= ldots= alpha_6=0[/math] . Прочитав равенство (8.5) справа налево, заключаем, что любая матрица из [math]M_<2 imes3>[/math] линейным образом выражается через выбранные 6 матриц, т.е. [math]M_<2 imes>= operatorname (mathbf_1,mathbf_2,ldots,mathbf_6)[/math] . Следовательно, [math]dim>=2cdot3=6[/math] , а матрицы [math]mathbf_1, mathbf_2,ldots,mathbf_6[/math] являются базисом (стандартным) этого пространства. Аналогично доказывается, что [math]dim>=mcdot n[/math] .

6. Для любого натурального [math]n[/math] в пространстве [math]P(mathbb)[/math] многочленов с комплексными коэффициентами можно найти п линейно независимых элементов. Например, многочлены [math]mathbf_1=1,[/math] [math]mathbf_2=z,[/math] [math]mathbf_3=z^2,,ldots,[/math] [math]mathbf_n=z^[/math] линейно независимы, так как их линейная комбинация

равна нулевому многочлену [math](o(z)equiv0)[/math] только в тривиальном случае [math]a_1=a_2=ldots=a_n=0[/math] . Поскольку эта система многочленов линейно независима при любом натуральном л, пространство [math]P(mathbb)[/math] бесконечномерное. Аналогично делаем вывод о бесконечной размерности пространства [math]P(mathbb)[/math] многочленов с действительными коэффициентами. Пространство [math]P_n(mathbb)[/math] многочленов степени не выше, чем [math]n[/math] , конечномерное. Действительно, векторы [math]mathbf_1=1,[/math] [math]mathbf_2=x,[/math] [math]mathbf_3=x^2,,ldots,[/math] [math]mathbf_=x^n[/math] образуют базис (стандартный) это го пространства, так как они линейно независимы и любой многочлен из [math]P_n(mathbb)[/math] можно представить в виде линейной комбинации этих векторов:

7. Пространство [math]C(mathbb)[/math] непрерывных функций является бесконечно мерным. Действительно, для любого натурального [math]n[/math] многочлены [math]1,x,x^2,ldots, x^[/math] , рассматриваемые как непрерывные функции, образуют линейно независимые системы (см. предыдущий пример).

В пространстве [math]T_<omega>(mathbb)[/math] тригонометрических двучленов (частоты [math]omega
e0[/math] ) с действительными коэффициентами базис образуют одночлены [math]mathbf_1(t)=sinomega t,

mathbf_2(t)=cosomega t[/math] . Они линейно независимы, так как тождественное равенство [math]asinomega t+bcosomega tequiv0[/math] возможно только в тривиальном случае [math](a=b=0)[/math] . Любая функция вида [math]f(t)=asinomega t+bcosomega t[/math] линейно выражается через базисные: [math]f(t)=a,mathbf_1(t)+b,mathbf_2(t)[/math] .

8. Пространство [math]mathbb^X[/math] действительных функций, определенных на множестве [math]X[/math] , в зависимости от области определения [math]X[/math] может быть конечномерным или бесконечномерным. Если [math]X[/math] — конечное множество, то пространство [math]mathbb^X[/math] конечномерное (например, [math]X=<1,2,ldots,n>[/math] ). Если [math]X[/math] — бесконечное множество, то пространство [math]mathbb^X[/math] бесконечномерное (например, пространство [math]mathbb^N[/math] последовательностей).

9. В пространстве [math]mathbb^<+>[/math] любое положительное число [math]mathbf_1[/math] , не равное единице, может служить базисом. Возьмем, например, число [math]mathbf_1=2[/math] . Любое положительное число [math]r[/math] можно выразить через [math]mathbf_1[/math] , т.е. представить в виде [math]alphacdot mathbf_1colon[/math] [math]r=2^<log_2r>=log_2rast2=alpha_1ast mathbf_1[/math] , где [math]alpha_1=log_2r[/math] . Следовательно, размерность этого пространства равна 1, а число [math]mathbf_1=2[/math] является базисом.

10. Пусть [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] — базис вещественного линейного пространства [math]V[/math] . Определим на [math]V[/math] линейные скалярные функции [math]mathcal_1, mathcal_2,ldots, mathcal_n[/math] , положив:

При этом, в силу линейности функции [math]mathcal_i[/math] , для произвольного вектора [math]mathbf=v_1 mathbf_1+v_2 mathbf_2+ldots+v_n mathbf_n[/math] получаем [math]mathcal(mathbf)=sum_^v_j mathcal(mathbf_j)=v_i[/math] .

Итак, определены [math]n[/math] элементов (ковекторов) [math]mathcal_1, mathcal_2, ldots, mathcal_n[/math] сопряженного пространства [math]V^<ast>[/math] . Докажем, что [math]mathcal_1, mathcal_2,ldots, mathcal_n[/math] — базис [math]V^<ast>[/math] .

Во-первых, покажем, что система [math]mathcal_1, mathcal_2,ldots, mathcal_n[/math] линейно независима. В самом деле, возьмем линейную комбинацию этих ковекторов [math](alpha_1 mathcal_1+ldots+alpha_nmathcal_n)(mathbf)=[/math] и приравняем ее нулевой функции

forall mathbfin V)colon

forall mathbfin V.[/math]

Подставляя в это равенство [math]mathbf=mathbf_i,

i=1,ldots,n[/math] , получаем [math]alpha_1=alpha_2cdot= alpha_n=0[/math] . Следовательно, система элементов [math]mathcal_1,mathcal_2,ldots,mathcal_n[/math] пространства [math]V^<ast>[/math] линейно независима, так как равенство [math]alpha_1mathcal_1+ldots+ alpha_nmathcal_n =mathbf[/math] возможно только в тривиальном случае.

Во-вторых, докажем, что любую линейную функцию [math]fin V^<ast>[/math] можно представить в виде линейной комбинации ковекторов [math]mathcal_1, mathcal_2,ldots, mathcal_n[/math] . Действительно, для любого вектора [math]mathbf=v_1 mathbf_1+v_2 mathbf_2+ldots+v_n mathbf_n[/math] в силу линейности функции [math]f[/math] получаем:

т.е. функция [math]f[/math] представлена в виде линейной комбинации [math]f=eta_1 mathcal_1+ldots+eta_nmathcal_n[/math] функций [math]mathcal_1,mathcal_2,ldots, mathcal_n[/math] (числа [math]eta_i=f(mathbf_i)[/math] — коэффициенты линейной комбинации). Следовательно, система ковекторов [math]mathcal_1, mathcal_2,ldots, mathcal_n[/math] является базисом сопряженного пространства [math]V^<ast>[/math] и [math]dim>=dim[/math] (для конечномерного пространства [math]V[/math] ).

Комментировать
11 445 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев