No Image

Как найти неизвестную матрицу х из уравнения

СОДЕРЖАНИЕ
3 806 просмотров
16 декабря 2019

Решение матричных уравнений: как это делается

Матричные уравнения имеют прямую аналогию с простыми алгебраическими уравнениями, в которых присутствует операция умножения. Например,

где x — неизвестное.

А, поскольку мы уже умеем находить произведение матриц, то можем приступать к рассмотрению аналогичных уравнений с матрицами, в которых буквы — это матрицы.

Итак, матричным уравнением называется уравнение вида

где A и B — известные матрицы, X — неизвестная матрица, которую требуется найти.

Как решить матричное уравнение в первом случае? Для того, чтобы решить матричное уравнение вида AX = B , обе его части следует умножить на обратную к A матрицу слева:

.

По определению обратной матрицы, произведение обратной матрицы на данную исходную матрицу равно единичной матрице: , поэтому

.

Так как E — единичная матрица, то EX = X . В результате получим, что неизвестная матрица X равна произведению матрицы, обратной к матрице A , слева, на матрицу B :

.

Как решить матричное уравнение во втором случае? Если дано уравнение

то есть такое, в котором в произведении неизвестной матрицы X и известной матрицы A матрица A находится справа, то нужно действовать аналогично, но меняя направление умножения на матрицу, обратную матрице A , и умножать матрицу B на неё справа:

,

,

.

Как видим, очень важно, с какой стороны умножать на обратную матрицу, так как . Обратная к A матрица умножается на матрицу B с той стороны, с которой матрица A умножается на неизвестную матрицу X . То есть с той стороны, где в произведении с неизвестной матрицей находится матрица A .

Как решить матричное уравнение в третьем случае? Встречаются случаи, когда в левой части уравнения неизвестная матрица X находится в середине произведения трёх матриц. Тогда известную матрицу из правой части уравнения следует умножить слева на матрицу, обратную той, которая в упомянутом выше произведении трёх матриц была слева, и справа на матрицу, обратную той матрице, которая располагалась справа. Таким образом, решением матричного уравнения

.

Решение матричных уравнений: примеры

Пример 1. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид AX = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Теперь у нас есть всё, чтобы найти матрицу, обратную матрице A :

.

Наконец, находим неизвестную матрицу:

Пример 2. Решить матричное уравнение

.

Пример 3. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид XA = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится справа. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A :

.

Находим неизвестную матрицу:

До сих пор мы решали уравнения с матрицами второго порядка, а теперь настала очередь матриц третьего порядка.

Пример 4. Решить матричное уравнение

.

Решение. Это уравнение первого вида: AX = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A , и делаем это легко, так как определитель матрицы A равен единице:

.

Находим неизвестную матрицу:

Пример 5. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид XA = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится справа. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A :

.

Находим неизвестную матрицу:

Пример 6. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид AXB = C , то есть неизвестная матрица X находится в середине произведения трёх матриц. Поэтому решение следует искать в виде . Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A :

.

Найдём матрицу, обратную матрице B .

Сначала найдём определитель матрицы B :

.

Найдём алгебраические дополнения матрицы B :

Составим матрицу алгебраических дополнений матрицы B :

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей B :

.

Находим матрицу, обратную матрице B :

.

Рассмотрим матричное уравнение вида

где и — данные матрицы, имеющие одинаковое количество строк, причем матрица квадратная. Требуется найти матрицу , удовлетворяющую уравнению (4.5).

Теорема 4.2 о существовании и единственности решения матричного уравнения (4.5). Если определитель матрицы отличен от нуля, то матричное уравнение (4.5) имеет единственное решение .

В самом деле, подставляя в левую часть равенства (4.5), получаем , т.е. правую часть этого равенства.

Заметим, что решением матричного уравнения служит обратная матрица .

Рассмотрим также матричное уравнение вида

где и — данные матрицы, имеющие одинаковое количество столбцов, причем матрица квадратная. Требуется найти матрицу , удовлетворяющую уравнению (4.6).

Теорема 4.3 о существовании и единственности решения матричного уравнения (4.6).

Если определитель матрицы отличен от нуля, то уравнение (4.6) имеет единственное решение .

Заметим, что матрица является как бы "левым" частным от "деления" матрицы на матрицу , поскольку матрица в (4.5) умножается на слева, а матрица — "правым" частным, так как матрица в (4.6) умножается на справа.

23. Системы т линейных уравнений з п неизвестными. Совместимость, определенность, неопределенность системы линейных уравнений. Метод Гауса.

Рассмотрим систему m линейных алгебраических уравнений относительно n неизвестных
x1, x2, . xn :

Решением системы называется совокупность n значений неизвестных

при подстановке которых все уравнения системы обращаются в тождества.

Система линейных уравнений может быть записана в матричном виде:

где A — матрица системы, b — правая часть, x — искомое решение, Apрасширенная матрица системы:

.

Система, имеющая хотя бы одно решение, называется совместной; система, не имеющая ни одного решения — несовместной.

Однородной системой линейных уравнений называется система, правая часть которой равна нулю:

Матричный вид однородной системы: Ax=0.

Однородная система не в с е г д а с о в м е с т н а, поскольку любая однородная линейная система имеет по крайней мере одно решение:

Если однородная система имеет единственное решение, то это единственное решение — нулевое, и система называется тривиально совместной. Если же однородная система имеет более одного решения, то среди них есть и ненулевые и в этом случае система называется нетривиально совместной.

Доказано, что при m=n для нетривиальной совместности системы необходимо и достаточно, чтобы определитель матрицы системы был равен нулю.

ПРИМЕР 1. Нетривиальная совместность однородной системы линейных уравнений с квадратной матрицей.

Применив к матрице системы алгоритм гауссова исключения, приведем матрицу системы к ступенчатому виду

.

Числоr ненулевых строк в ступенчатой форме матрицы называется рангом матрицы, обозначаем
r=rg(A)
или r=Rg(A).

Справедливо следующее утверждение.

Для того, чтобы однородная система была нетривиально совместна, необходимо и достаточно, чтобы ранг r матрицы системы был меньше числа неизвестных n.

ПРИМЕР 2. Нетривиальная совместность однородной системы трех линейных уравнений с четырьмя неизестными.

Если однородная система нетривиально совместна, то она имеет бесконечное множество решений, причем линейная комбинация любых решений системы тоже является ее решением.
Доказано, что среди бесконечного множества решений однородной системы можно выделить ровно n-r линейно независимых решений.
Совокупность n-r линейно независимых решений однородной системы называется фундаментальной системой решений. Любое решение системы линейно выражается через фундаментальную систему. Таким образом, если ранг r матрицы A однородной линейной системы Ax=0 меньше числа неизвестных n и векторы
e1, e2, . en-r образуют ее фундаментальную систему решений (Aei=0, i=1,2, . n-r), то любое решение x системы Ax=0 можно записать в виде

где c1, c2, . cn-r — произвольные постоянные. Записанное выражение называется общим решением однородной системы.

Исследовать однородную систему — значит установить, является ли она нетривиально совместной, и если является, то найти фундаментальную систему решений и записать выражение для общего решения системы.

Исследуем однородную систему методом Гаусса.

матрица исследуемой однородной системы, ранг которой r 0 = x2 0 = … = xn 0 = 0 , которое называется нулевым, или тривиальным;

2. добавление нулевого столбца не меняет ранга матрицы, следовательно, выполняется достаточное условие теоремы Кронекера–Капелли;

3. θ О Img ^A , так как Img ^A — линейное пространство.

Фундаментальной системой решений однородной системы (1) называется базис ядра оператора ^ A (точнее, координатные столбцы базисных векторов в Ker ^ A ).

Это определение можно сформулировать несколько иначе:

Фундаментальной системой решений однородной системы (1) называется n − r линейно независимых решений этой системы.

Будем обозначать координатные столбцы базисных векторов в Ker ^ A X 1, X 2, … , X n r .

Теорема о структуре общего решения однородной системы уравнений :

Любое решение однородной системы линейных уравнений определяется формулой

X = C1 · X1 + C2 · X2 + … + Cn r · Xn r, (3)

Свойства общего решения однородной системы уравнений:

1. При любых значениях C1, C2, … , Cn r X , определяемое формулой (3), является решением системы (1).

2. Каково бы ни было решение X0 , существуют числа C1 0 , … , Cn r 0 такие, что

X0 = C1 0 · X1 + C2 0 · X2 + … + Cn r 0 · Xn r.

Вывод: Чтобы найти фундаментальную систему и общее решение однородной системы, нужно найти базис ядра соответствующего линейного оператора.

27. Определение комплексного числа. Алгебраическая форма комплексних чисел, действия над ними.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9364 — | 7302 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

AX = B, где матрица A обратима

Поскольку умножение матриц не всегда коммутативно, умножаем слева обе части уравнения на$ A^<-1>$.

$A^<-1>cdot|Acdot X = B$

$A^<-1>cdot Acdot X = A^<-1>cdot B$

$I_cdot X = A^<-1>cdot B$

Решение уравнения имеет общий вид
$colorcdot B>$

Пример 50
Решить уравнение
$egin 1 & 3\ 2 & 5 endcdot X egin 3 & 5\ 2 & 1 end$

Убедимся, что первая матрица обратима.
$left|A
ight|=5-6=-1
eq 0$, следовательно, матрица обратима.

Умножаем слева на обратную ей матрицу.
$egin 1 & 3\ 2 & 5\ end^<-1>cdot egin 1 & 3\ 2 & 5 endcdot X= egin 1 & 3\ 2 & 5 end^<-1>cdot egin 3 & 5\ 2 & 1 end$

$I_<2>cdot X = egin 1 & 3\ 2 & 5 end^<-1>cdot egin 3 & 5\ 2 & 1 end$

$egin 1 & 3\ 2 & 5 end^<-1>= egin -5 & 3\ 2 & -1 end ightarrow X= egin -5 & 3\ 2 & -1 endcdot egin 3 & 5\ 2 & 1 end= egin -9 & -22\ 4 & 9 end$

XA = B, где матрица A обратима

Поскольку умножение матриц не всегда коммутативно, умножаем справа обе части уравнения на$ A^<-1>$.

$Xcdot A = B |cdot A^<-1>$

$Xcdot Acdot A^ <-1>= Bcdot A^<-1>$

$X cdot I_ =Bcdot A^<-1>$

Решение уравнения имеет общий вид
$color>$

Пример 51
Решить уравнение
$X egin 1 & 3\ 2 & 5\ end= egin 3 & 5\ 2 & 1\ end$

Убедимся, что первая матрица обратима.
$left|A
ight|=5-6=-1
eq 0$, следовательно, матрица обратима.

Умножаем справа на обратную ей матрицу.
$X egin 1 & 3\ 2 & 5 endcdot egin 1 & 3\ 2 & 5 end^<-1>= egin 3 & 5\ 2 & 1 endcdot egin 1 & 3\ 2 & 5 end^<-1>$

$Xcdot I_<2>= egin 3 & 5\ 2 & 1 endcdot egin 1 & 3\ 2 & 5 end^<-1>$

$egin 1 & 3\ 2 & 5 end^<-1>= egin -5 & 3\ 2 & -1 end ightarrow X= egin 3 & 5\ 2 & 1 end cdot egin -5 & 3\ 2 & -1 end= egin -5 & 4\ -8 & 5 end$

Комментировать
3 806 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев