No Image

Как правильно умножать столбиком с нулями

СОДЕРЖАНИЕ
6 381 просмотров
16 декабря 2019

Умножение натуральных чисел удобно проводить особым способом, который получил название «умножение столбиком» или «умножение в столбик». Вся прелесть этого способа заключается в том, что умножение многозначных натуральных чисел сводится к последовательному умножению двух однозначных чисел.

В этой статье мы самым подробным образом разберем алгоритм умножения столбиком двух натуральных чисел. Последовательность действий будем описывать пошагово, одновременно показывая решения примеров.

Навигация по странице.

Что необходимо знать для умножения натуральных чисел столбиком?

Промежуточные вычисления при умножении столбиком проводятся с использованием таблицы умножения, поэтому ее желательно знать наизусть, чтобы не тратить время на поиск нужного результата.

Рано или поздно при умножении столбиком мы столкнемся с умножением однозначного натурального числа на нуль. В этом случае мы будем пользоваться свойством умножения натурального числа на нуль: a·0=0, где a – произвольное натуральное число..

Рекомендуем разобраться с материалом статьи сложение столбиком. Это связано с тем, что на одном из этапов умножения в столбик приходится складывать промежуточные результаты (которые называют неполными произведениями), используя принцип сложения столбиком.

Запись множителей при умножении в столбик.

Начнем с правил записи множителей при умножении столбиком.

Второй множитель записывается под первым множителем так, что первые справа цифры, отличные от цифры 0, располагаются друг под другом. Снизу под записанными множителями проводится горизонтальная линия, а слева ставится знак умножения вида «×». Приведем примеры правильной записи множителей при умножении столбиком. Ниже показаны записи в столбик произведений чисел 352 и 71, 550 и 45 002, а также 534 000 и 4 300.

С записью разобрались.

Теперь можно переходить непосредственно к процессу умножения двух натуральных чисел столбиком. Сначала рассмотрим умножение многозначного числа на однозначное число. После этого разберем умножение столбиком двух многозначных натуральных чисел.

Умножение столбиком многозначного натурального числа на однозначное число.

Сейчас мы приведем алгоритм умножения столбиком многозначного натурального числа на однозначное натуральное число. Будем это делать, одновременно описывая решение примера.

Сначала будем считать, что в записи многозначного числа справа находится цифра, отличная от 0.

Пусть нам требуется умножить данное многозначное натуральное число 45 027 на данное однозначное число 3.

Записываем множители так, как это предполагает умножение столбиком (при этом однозначное число оказывается под крайним справа знаком многозначного числа).

Для нашего примера запись будет иметь следующий вид:

Теперь выполняем умножение значение разряда единиц данного многозначного числа на данное однозначное число. Если при этом получаем число меньшее 10, то записываем его под горизонтальной чертой в том же столбце, в котором находится данное умножаемое однозначное число. Если же получаем число 10 или число большее, чем 10, то под горизонтальной чертой записываем значение разряда единиц полученного числа, а значение разряда десятков запоминаем (запомненное число прибавим к результату умножения на следующем шаге, после чего запомненное число удалим из памяти).

То есть, умножаем 7 (это значение разряда единиц первого множителя 45 027) на 3. Получаем 21. Так как 21 больше 10, то под чертой записываем число 1 (это значение разряда единиц полученного числа 21) и запоминаем число 2 (это значение разряда десятков числа 21). На этом шаге запись примет следующий вид:

Переходим к следующему этапу алгоритма умножения столбиком. Выполняем умножение значения разряда десятков данного многозначного числа на данное однозначное число и к произведению еще прибавляем число, запомненное на предыдущем этапе (если мы его запоминали). Если в результате получаем число меньшее десяти, то записываем его под горизонтальной чертой слева от уже записанного там числа. Если же в результате получаем число десять или число большее десяти, то под горизонтальной чертой записываем значение разряда единиц полученного числа, а значение разряда десятков запоминаем (его так же используем на следующем шаге).

Итак, умножаем 2 (это значение разряда десятков первого множителя 45 027) на 3, имеем 6. К этому числу прибавляем запомненное на предыдущем шаге число 2, получаем 6+2=8. Так как 8 меньше, чем 10, то под горизонтальной чертой записываем число 8 на нужную позицию (при этом нам не нужно запоминать никакое число, то есть, теперь в памяти у нас чисел нет). Имеем:

На следующем шаге действуем аналогично, но уже выполняем умножение значения разряда сотен данного многозначного числа на данное однозначное натуральное число. Прибавляем к этому произведению запомненное число (если его запоминали); сравниваем результат с числом 10; если нужно, запоминаем новое число, и записываем нужное число под горизонтальной чертой слева от уже находящихся там чисел.

Умножаем 0 на 3, получаем 0. Так как в памяти у нас нет никакого числа, то к полученному числу 0 не нужно ничего прибавлять. Число 0 меньше 10, поэтому записываем 0 под горизонтальной линией на нужной позиции:

После этого переходим к умножению значения следующего разряда данного многозначного натурального числа и данного однозначного натурального числа. Аналогичным образом действуем до того момента, пока не умножим значения всех разрядов данного многозначного числа на данное однозначное натуральное число.

Итак, умножаем 5 на 3, получаем 15. Так как 15>10, то пишем под чертой 5 и запоминаем число 1:

Наконец, умножаем 4 на 3, получаем 12. К 12 прибавляем запомненное на предыдущем этапе число 1, имеем 12+1=13. Так как 13 больше, чем 10, то записываем число 3 на нужное место и запоминаем число 1:

Отметим что, если на последнем этапе нам пришлось запомнить число, то его нужно записать под горизонтальной чертой слева от уже находящихся там чисел.

У нас в памяти находится число 1, поэтому его нужно написать на нужное место под чертой:

На этом процесс умножения столбиком многозначного натурального числа на однозначное натуральное число заканчивается, а результатом умножения является число, записанное под горизонтальной линией.

Таким образом, умножение столбиком натуральных чисел 45 027 и 3 привело нас к результату 135 081.

Для наглядности схематично изобразим алгоритм умножения столбиком многозначного натурального числа на однозначное натуральное число (этот рисунок отражает лишь общую картину, но не показывает всех нюансов).

Осталось разобраться с умножением столбиком многозначного натурального числа, в записи которого справа находится цифра 0 или несколько цифр 0 подряд, на однозначное число. Также рассмотрим все шаги умножения столбиком в таких случаях на примере. Причем возьмем числа из предыдущего примера, но в записи многозначного числа допишем несколько цифр 0 справа.

Итак, умножим натуральные числа 4 502 700 (мы дописали две цифры 0) на число 3.

В этом случае сначала записываем умножаемые числа так, как это предполагает умножение столбиком:

После этого проводим умножение столбиком так, как будто цифр 0 справа нет.

Воспользуемся результатом из уже решенного выше примера:

На заключительном этапе умножения столбиком под горизонтальной чертой, справа от уже имеющихся там цифр, записываем столько цифр 0, сколько их находится справа в исходном умножаемом числе.

В нашем примере нужно дописать две цифры 0. Запись примет вид:

На этом умножение столбиком завершено.

Результатом умножения многозначного натурального числа 4 502 700, запись которого оканчивается нулями, на однозначное натуральное число 3 является 13 508 100.

Умножение в столбик двух многозначных натуральных чисел.

Опишем все этапы алгоритма умножения двух многозначных натуральных чисел столбиком.

Описание будем проводить вместе с решением примера. Сейчас будем считать, что в записях умножаемых натуральных чисел справа не находятся цифры 0. Умножение многозначных натуральных чисел, записи которых оканчиваются нулями, рассмотрим в конце этого пункта.

Умножим столбиком числа 207 на 8 063.

Начинаем с записи множителей друг под другом. Заметим, что удобнее сверху располагать множитель, запись которого состоит из большего количества знаков (в нашем примере сверху запишем число 8 603, так как в его записи 4 знака, а число 207 трехзначное). Если же записи множителей содержат одинаковое количество знаков, то не имеет значения, какой из множителей записывать сверху. Итак, располагаем множители друг под другом, чтобы цифры первого множителя были под цифрами второго множителя справа налево:

Теперь на каждом следующем шаге будем получать так называемые неполные произведения.

Первый этап алгоритма заключается в умножении столбиком первого множителя (в нашем примере это число 8 063) на значение разряда единиц второго множителя (в нашем примере значением разряда единиц числа 207 является число 7). Все действия аналогичны умножению столбиком многозначного числа на однозначное число (при необходимости вернитесь к предыдущему пункту этой статьи), в результате под горизонтальной линией имеем первое неполное произведение. На этом этапе запись примет следующий вид:

Переходим ко второму этапу. На этом этапе умножаем столбиком первый множитель (в нашем примере это число 8 063) на значение разряда десятков второго множителя, если оно не равно нулю. Если значение разряда десятков второго множителя равно нулю, то переходим к следующему этапу (в нашем примере значением разряда десятков числа 207 равно нулю, поэтому, мы перейдем к третьему этапу). Результаты записываем под чертой ниже уже записанного там числа, начиная с позиции, которая соответствует разряду десятков.

На третьем, четвертом и так далее этапах действуем аналогично, умножая столбиком первый множитель (число 8 063) на значение разряда сотен второго множителя (если оно не равно нулю), далее на значение разряда тысяч (если оно не равно нулю) и так далее. Результаты записываем под чертой ниже уже записанных там чисел, начиная с позиции, отвечающей разряду однозначного числа, на которое проводится умножение на данном этапе.

Итак, умножаем число 8 063 на значение разряда сотен числа 207, то есть на число 2. Получаем второе неполное произведение, а решение примера примет следующий вид:

Итак, все неполные произведения вычислены. Остается последний этап алгоритма, на котором складываются все неполные произведения, причем делается это так же, как при сложении в столбик. Сложение производится с использованием уже имеющейся записи (неполные произведения остаются на тех местах, где они и записаны, то есть, они никуда не сдвигаются), снизу проводится еще одна горизонтальная линия, слева ставится знак «+», а результаты сложения записываются под нижней линией. Если в столбце находится только одно число, и при этом в памяти нет запомненного на предыдущем этапе числа, то оно записывается под горизонтальной линией.

В нашем примере получаем:

Образовавшееся внизу число является результатом умножения исходных многозначных натуральных чисел. Итак, произведение чисел 8 063 и 207 равно 1 669 041.

Для наглядности схематично изобразим процесс умножения столбиком двух натуральных чисел.

Покажем решение еще одного примера для закрепления материала.

Вычислять же значения дробей и многозначных чисел в строку бывает довольно затруднительно.

удержать промежуточные результаты в голове порой просто невозможно. Как раз для таких случаев придумано умножение в столбик — этот метод значительно упрощает математические вычисления.

Необходимый минимум

Преимущество использования «столбиков» очевидно — пропадает необходимость считать в уме или всегда держать при себе калькулятор. Даже действительно длинные числа с помощью этого метода умножаются без лишних проблем. Достаточно иметь при себе:

  • черновик (листок);
  • ручку;
  • умение складывать числа столбиком;
  • хорошее знание таблицы умножения.

Если же с последним пока ещё возникают затруднения, можно положить её рядом с собой и сверять по ходу решения. Правда, при таком раскладе процесс затянется на какое-то время, а полученный результат желательно перепроверить. Ведь одна маленькая ошибка в начале или середине вычисления сделает ответ заведомо неверным.

Регулярное решение примеров столбиком тренирует внимательность и память ребёнка, учит его концентрироваться на отдельно взятой задаче. Это также удобный способ закрепить базовые математические знания.

Как умножать столбиком

Чтобы научиться решать примеры, необходимо понять и отработать базовый алгоритм.

В целом он достаточно прост:

  1. Записать пример в привычной форме, строкой. Выбрав из двух чисел наименьшее, подчеркнуть его карандашом — при новой записи оно будет стоять внизу, т. к. умножать на меньший множитель всегда проще. Этот пункт можно опустить, если пример уже есть перед глазами (в тетради, учебнике или на доске).
  2. После этого можно переходить к записи столбиком. Первым пишут больший множитель, а под ним — подчёркнутое число. Слева обязательно ставится знак умножения «х», а пример подводится чертой. Важным моментом являются разряды: единицы должны стоять строго под единицами, десятки под десятками и т. д. Исключением считаются только цифры, на конце которых располагаются нули.
  3. Далее идёт поэтапное умножение. Каждую из цифр первого множителя нужно умножить на крайнюю цифру второго. Делать это надо справа налево: единицы, десятки, сотни и т. д. Если получаются двухзначные числа, под чертой записывается только последняя. Остальное потребуется перенести в следующий разряд (запомнить или указать над столбиком слева) и сложить со значением, полученным при следующем умножении.
  4. После умножения на единицу второго множителя с остальными цифрами проводят аналогичные манипуляции. Результат каждого вычисления записывать под чертой, сдвигаясь влево на одну позицию.
  5. Для получения ответа найденные значения складывают.

Метод столбиков не подходит для решения примеров, содержащих корни или возведённые в степень числа.

Прежде чем приступить к вычислениям, «проблемные» цифры нужно преобразовать до целых или десятичных.

Решение базовых примеров

Для большей наглядности стоит привести примеры умножения двузначных и трёхзначных чисел.

Пример 1 — отыскать произведение чисел 58 и 23. Решение задания:

  1. Записать числа столбиком. Сначала нужно выполнить умножение верхнего множителя на правое крайнее число нижнего: 8х3=24. Четвёрку записать под черту в разряд единиц, а 2 «запомнить». И второе: (5х3)+2=17 — результат указать перед первым. Получится 174.
  2. По аналогии с предыдущей операцией нужно умножить первое число на 2: 8х2=16 и (5х2)+1=11. Вычисление даст 116, которое нужно записать под 174, отступив на 1 цифру влево.
  3. Конечный ответ получить путём сложения умножений: 174+1160=1334.

По такому же принципу происходит умножение трёхзначных чисел. Разве что вычисление потребует чуть больше времени, а количество промежуточных результатов увеличится.

Пример 2 — решить выражение 659х854. Пошаговое решение:

  1. Для удобства множители необходимо поменять местами и только потом записать столбиком как: 854х659.
  2. Сначала выполняется умножение на 9: 4х9=36, (5х9)+3=48 и (8х9)+4=76. Последнее число (единицы) записать в столбик, остатки последовательно перенести и суммировать. В итоге получится 7686.
  3. Последовательно умножить на 5: 4х5=20, (5х5)+2=27 и (8х5)+2=42. После всех манипуляций должно быть 4270.
  4. Умножение 854 на 6: 4х6=24, (5х6)+2=32 и (8х6)+3=51. Выйдет 5124.
  5. Сложить результаты, заменяя пустые «соты» в столбцах на 0: 7686+42700+512400=565186.

При затруднениях в процессе решения можно проверить правильность умножения столбиком онлайн-калькулятором. А также существуют специальные генераторы примеров, которые используют как своеобразный тренажёр для закрепления изученного материала.

Целые числа с нулями

В ситуациях с нулями немного сложнее.

Если нолик «потерялся» где-то в середине, то в процессе решения его следует пропустить. Ведь умножение абсолютно любого числа на 0 в итоге даёт этот же 0. Поэтому можно сразу переходить к следующей цифре и заполнить строку под чертой, отступив не на 1, а на 2 единицы.

Что касается таких чисел как 10, 100, 1200, 12030 и т. п. — суть такая же, но алгоритм решения отличается. Вычисления проводят лишь с цифрами, отличными от нуля. А все «0» на конце чисел просто игнорируются. Хотя после сложения их количество надо подсчитать и добавить к ответу:

  • 10х10=100 — 1+1=2 нуля;
  • 12х2000=24000 — 3 нуля;
  • 1000х10000=1000000 — 3+4=7 нулей и т. д.

Задание 1 — найти произведение чисел 202 и 123. Решение таково:

  1. Важный момент — 202>123, но первый множитель содержит «0», поэтому при вычислении столбиком числа местами не менять не нужно.
  2. Умножение на 2: 3х2=6, 2х2=4 и 2х1=2. Записать ответы под черту в обратном порядке — 246.
  3. Так как множитель содержит 0, пропустить его и сразу перейти к следующему этапу.
  4. Снова на 2. Второй раз можно не вычислять, просто переписать 246, сделав отступ влево на 2 цифры.
  5. Сложение столбиком даст окончательный ответ: 246+24600=24846.

Задание 2 — вычислить 120х300. Пошаговое решение:

  1. Отбросить «ненужное». При записи в столбик нули в конце числа пишут только под нулями, а цифры — под цифрами. То есть, потребуется найти произведение 12х3.
  2. При умножении 2 на 3 будет 6 — указать под тройкой. 1х3=3. Под чертой записать 36.
  3. Чтобы найти ответ, нужно посчитать «0» в примере: 1+2=3. То есть 120х300=3600.

Операции с десятичными дробями

На самом деле умножение десятичных дробей столбиком не слишком сильно отличается от аналогичного действия с числами, у которых есть нули.

В этом случае примеры решают точно так же, как и обычные — про запятую можно временно забыть. Но, когда ответ уже найден, её обязательно нужно восстановить. А для этого надо узнать, сколько цифр после запятой находится у каждого множителя. Их количество складывают, а потом отсчитывают это число с конца ответа.

Задание 1 — вычислить 2,5х3. Пошаговое решение:

  1. Запятые на время условно убрать: 25х3.
  2. Сначала умножить на 3 крайнюю правую цифру первого множителя — 5х3=15. Под черту записать 5, а 1 «запомнить».
  3. 2х3=6 и оставшаяся единица. Получится 75.
  4. Чтобы найти конечный ответ, следует посмотреть на количество цифр запятой. Она одна, поэтому 2,5х3=7,5.

Задание 2 — отыскать значение произведения 7,5х2,5. Решение с объяснением:

  1. Пример записать в столбик, игнорируя запятые: 75х25.
  2. По общим правилам сначала умножить на 5. При 5х5=25 записать цифру 5 под единицами, а 2 — отправить к десяткам. 7х5=35 и плюс перенос — под чертой должно быть 375.
  3. Аналогично с числом 2: 5х2=10, где единицу нужно перенести, и (7х2)+1=15.
  4. Сложение промежуточных результатов: 375+1500=1875.
  5. В обоих множителях после запятой стоит 1 цифра, а значит 1+1=2. Конечный ответ: 18,75.

Если как следует разобраться в теме, юный математик сможет решать даже сложные примеры. Единственный минус метода — большие числа делают вычисления громоздкими, из-за каждой ошибки придётся проверять и править весь пример.

Сайт для детей и их родителей

Умножение в столбик

Умножение многозначных или многоразрядных чисел удобно производить письменно в столбик, последовательно умножая каждый разряд. Давайте разберем, как это делать. Начнем с умножения многоразрядного числа на одноразрядное число и постепенно увеличим разрядность второго множителя.

Для того чтобы умножить в столбик два числа, разместите их одно под другим, единицы под единицами, десятки под десятками и так далее. Сравните два множителя и меньший разместите под большим. Затем начинайте умножать каждый разряд второго множителя на все разряды первого множителя.

Пишем однозначное число под единицами многозначного.

Умножаем 2 последовательно на все разряды первого множителя:

Умножаем на единицы:

8 × 2 = 16

6 пишем под единицами, а 1 десяток запоминаем. Для того, чтобы не забыть пишем 1 над десятками.

Умножаем на десятки:

3 десятка × 2 = 6 десятков + 1 десяток (запоминали) = 7 десятков . Ответ пишем под десятками.

Умножаем на сотни:

4 сотни × 2 = 8 сотен . Ответ пишем под сотнями. В результате получаем:

438 × 2 = 876

Умножим трехзначное число на двухзначное:

924 × 35

Пишем двухзначное число под трехзначным, единицы под единицами, десятки под десятками.

1 этап : находим первое неполное произведение , умножив 924 на 5 .

Умножаем 5 последовательно на все разряды первого множителя.

Умножаем на единицы :

4 × 5 = 20 0 пишем под единицами второго множителя, 2 десятка запоминаем.

Умножаем на десятки:

2 десятка × 5 = 10 десятков + 2 десятка (запоминали) = 12 десятков , пишем 2 под десятками второго множителя, 1 запоминаем.

Умножаем на сотни:

9 сотен × 5 = 45 сотен + 1 сотня (запоминали) = 46 сотен , пишем 6 под разрядом сотен, а 4 под разрядом тысяч второго множителя.

924 × 5 = 4620

2 этап: находим второе неполное произведение , умножив 924 на 3 .

Умножаем 3 последовательно на все разряды первого множителя. Ответ пишем под ответом первого этапа, сдвинув его на один разряд влево.

Умножаем на единицы:

4 × 3 = 12 2 пишем под разрядом десятков, 1 запоминаем.

Умножаем на десятки:

2 десятка × 3 = 6 десятков + 1 десяток (запоминали) = 7 десятков , пишем 7 под разрядом сотен.

Умножаем на сотни:

9 сотен × 3 = 27 сотен , 7 пишем в разряд тысяч, а 2 в разряд десятков тысяч.

3 этап: складываем оба неполных произведения.

Складываем поразрядно, учитывая сдвиг.

В результате получаем:

924 × 35 = 32340

Умножим трехзначное число на трехзначное:

Возьмем первый множитель из предыдущего примера, а второй множитель тоже из предыдущего, но больше на 8 сотен:

924 × 835

Итак, два первых этапа такие же, как в предыдущем примере.

3 этап: находим третье неполное произведение , умножив 924 на 8

Умножаем 8 последовательно на все разряды первого множителя. Результат пишем под вторым неполным произведением со сдвигом влево, в разряд сотен.

4 × 8 = 32 , пишем 2 в разряд сотен, 3 запоминаем

2 × 8 = 16 + 3 (запоминали) = 19 , пишем 9 в разряд тысяч, 1 запоминаем

9 × 8 = 72 + 1 (запоминали) = 73 , пишем 73 в разряды сотен и десятков тысяч соответственно.

4 этап: складываем три неполных произведения .

В результате получаем:

924 × 835 = 771540

Итак, сколько разрядов во втором множителе, столько и будет слагаемых в сумме неполных произведений.

Возьмем два множителя с одинаковой разрядностью:

3420 × 2700

При умножении двух чисел оканчивающихся нулями пишем одно число под другим так, чтобы нули обоих множителей остались в стороне.

Теперь умножаем два числа, не обращая внимания на нули:

342 × 27 = 9234

Общее количество нулей приписываем к получившемуся произведению.

В результате получаем:

3420 × 2700 = 9234000

Подведем итог. Для того чтобы письменно в столбик умножить два числа друг на друга, надо :

1. Сравнить два числа и меньшее написать под большим, единицы под единицами, десятки под десятками и так далее. Если числа с нулями, то пишем одно число под другим так, чтобы нули обоих множителей остались в стороне.

2. Умножаем последовательно каждый разряд второго множителя, начиная с единиц, на все разряды первого множителя. На нули внимания не обращаем

3. Неполные произведения пишем друг под другом, сдвигая каждое неполное произведение на один разряд влево. Сколько во втором множителе значащих разрядов (не 0), столько будет неполных произведений.

4 . Складываем все неполные произведения.

5. К полученному результату приписываем нули из обоих множителей.

Вот и все, спасибо, что Вы с нами!

  1. Многозначные числаВ прошлый раз мы говорили о цифрах и о разрядах.
  2. ЦифрыС самого детства нас учат считать игрушки, конфетки, яблоки. Люди.
  3. Вычитание в столбикДля того чтобы вычесть одно число из другого, поместим вычитаемое.
  4. Сложение в столбикЛегко сложить одноразрядные или однозначные числа. Например, числа 3 и.
  5. Как выучить таблицу умноженияНачиная со второго класса без знания таблицы умножения на зубок.

Понравилась статья — поделитесь с друзьями:

Подпишитесь на новости сайта:

Оставляйте пожалуйста комментарии в форме ниже

Комментировать
6 381 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев