No Image

Как построить график квадратичной

СОДЕРЖАНИЕ
15 просмотров
16 декабря 2019

Квадратичной функцией называется функция вида:
y=a*(x^2)+b*x+c,
где а – коэффициент при старшей степени неизвестной х,
b – коэффициент при неизвестной х,
а с – свободный член.
Графиком квадратичной функции является кривая, называемая параболой. Общий вид параболы представлен на рисунке ниже.

Рис.1 Общий вид параболы.

Есть несколько различных способов построения графика квадратичной функции. Мы рассмотрим основной и самый общий из них.

Алгоритм построения графика квадратичной функции y=a*(x^2)+b*x+c

1. Построить систему координат, отметить единичный отрезок и подписать координатные оси.

2. Определить направление ветвей параболы (вверх или вниз).
Для этого надо посмотреть на знак коэффициента a. Если плюс – то ветви направлены вверх, если минус – то ветви направлены вниз.

3. Определить координату х вершины параболы.
Для этого нужно использовать формулу Хвершины = -b/2*a.

4. Определить координату у вершины параболы.
Для этого подставить в уравнение Увершины = a*(x^2)+b*x+c вместо х, найденное в предыдущем шаге значение Хвершины.

5. Нанести полученную точку на график и провести через неё ось симметрии, параллельно координатной оси Оу.

6. Найти точки пересечения графика с осью Ох.
Для этого требуется решить квадратное уравнение a*(x^2)+b*x+c = 0 одним из известных способов. Если в уравнение не имеет вещественных корней, то график функции не пересекает ось Ох.

7. Найти координаты точки пересечения графика с осью Оу.
Для этого подставляем в уравнение значение х=0 и вычисляем значение у. Отмечаем эту и симметричную ей точку на графике.

8. Находим координаты произвольной точки А(х,у)
Для этого выбираем произвольное значение координаты х, и подставляем его в наше уравнение. Получаем значение у в этой точке. Нанести точку на график. А также отметить на графике точку, симметричную точке А(х,у).

9. Соединить полученные точки на графике плавной линией и продолжить график за крайние точки, до конца координатной оси. Подписать график либо на выноске, либо, если позволяет место, вдоль самого графика.

Пример построения графика

В качестве примера, построим график квадратичной функции заданной уравнением y=x^2+4*x-1
1. Рисуем координатные оси, подписываем их и отмечаем единичный отрезок.
2. Значения коэффициентов а=1, b=4, c= -1. Так как а=1, что больше нуля ветви параболы направлены вверх.
3. Определяем координату Х вершины параболы Хвершины = -b/2*a = -4/2*1 = -2.
4. Определяем координату У вершины параболы
Увершины = a*(x^2)+b*x+c = 1*((-2)^2) + 4*(-2) – 1 = -5.
5. Отмечаем вершину и проводим ось симметрии.
6. Находим точки пересечения графика квадратичной функции с осью Ох. Решаем квадратное уравнение x^2+4*x-1=0.
х1=-2-√3 х2 = -2+√3. Отмечаем полученные значения на графике.
7. Находим точки пересечения графика с осью Оу.
х=0; у=-1
8. Выбираем произвольную точку B. Пусть она имеет координату х=1.
Тогда у=(1)^2 + 4*(1)-1= 4.
9. Соединяем полученные точки и подписываем график.

В результате получится такой график.

Нужна помощь в учебе?

Предыдущая тема: Графики функции: от чего зависит вид графика функции
Следующая тема:&nbsp&nbsp&nbspРешение неравенств второй степени с одной переменной: приводим примеры

Все неприличные комментарии будут удаляться.

Прежде чем перейти к разбору квадратичной функции рекомендуем вспомнить, что называют функцией в математике.

Если вы прочно закрепите общие знания о функции (способы задания, понятие графика) дальнейшее изучение других видов функций будет даваться значительно легче.

Что называют квадратичной функцией

Квадратичная функция — это функция вида

Другими словами можно сказать, что если в функции старшая (то есть самая большая) степень, в которой стоит « x » — это « 2 », то перед нами квадратичная функция.

Рассмотрим примеры квадратичных функций и определим, чему в них равны коэффициенты « a », « b » и « с ».

Квадратичная функция Коэффициенты
y = 2x 2 − 7x + 9
  • a = 2
  • b = −7
  • с = 9
y = 3x 2 − 1
  • a = 3
  • b = 0
  • с = −1
y = −3x 2 + 2x
  • a = −3
  • b = 2
  • с = 0

Как построить график квадратичной функции

График квадратичной функции называют параболой.

Парабола выглядит следующим образом.

Также парабола может быть перевернутой.

Существует четкий алгоритм действий при построении графика квадратичной функции. Рекомендуем при построении параболы всегда следовать этому порядку действий, тогда вы сможете избежать ошибок при построении.

Чтобы было проще понять этот алгоритм, сразу разберем его на примере.

Построим график квадратичной функции « y = x 2 −7x + 10 ».

    Направление ветвей параболы

Если « a > 0 », то ветви направлены вверх.

Если « a », то ветви направлены вниз.

В нашей функции « a = 1 », это означает, что ветви параболы направлены вверх.

Координаты вершины параболы

Чтобы найти « x » (координата вершины по оси « Ox ») нужно использовать формулу:

x =

−b
2a
Читайте также:  Как поставить драйвера если не работает usb

Найдем « x » для нашей функции « y = x 2 −7x + 10 ».

x =

− (−7)
2 · 1

=

7
2

= 3,5

Теперь нам нужно найти « y » (координату вершины по оси « Oy »). Для этого нужно подставить найденное значение « x » в исходную функцию. Вспомнить, как найти значение функции можно в уроке «Как решать задачи на функцию» в подразделе «Как получить значение функции».

Выпишем полученные координаты вершины параболы.

(·) A (3,5; −2,25) — вершина параболы.

Отметим вершину параболы на системе координат. Проведем через отмеченную точку ось симметрии, так как парабола — это симметричный график относительно оси « Oy ».

Для начала давайте разберемся, что называют нулями функции.

Нули функции — это точки пересечения графика функции с осью « Ox » (осью абсцисс).

Наглядно нули функции на графике выглядят так:

Свое название нули функции получили из-за того, что у этих точек координата по оси « Oy » равна нулю.

Теперь давайте разберемся, как до построения графика функции рассчитать координаты точек нулей функции.

Чтобы найти координаты точек нулей функции, нужно в исходную функцию подставить вместо « y = 0 ».

Подставим в заданную функцию « y = x 2 −7x + 10 » вместо « y = 0 » и решим полученное квадратное уравнение относительно « x » .

0 = x 2 −7x + 10
x 2 −7x + 10 = 0
x1;2 =

7 ± √ 49 − 4 · 1 · 10
2 · 1

x1;2 =

7 ± √ 9
2

x1;2 =

7 ± 3
2

x1 =
7 + 3
2
x2 =

7 − 3 2 x1 =

10 2 x2 =

4 2 x1 = 5 x2 = 2

Мы получили два корня в уравнении, значит, у нас две точки пересечения с осью « Ox ». Назовем эти точки и выпишем их координаты.

Отметим полученные точки («нули функции») на системе координат.

Возьмем четыре произвольные числовые значения для « x ». Целесообразно брать целые числовые значения на оси « Ox », которые наиболее близки к оси симметрии. Числа запишем в таблицу в порядке возрастания.

x 1 3 4 6
y

Для каждого выбранного значения « x » рассчитаем « y ».

  • y(1) = 1 2 − 7 · 1 + 10 = 1 − 7 + 10 = 4
  • y(3) = 3 2 − 7 · 3 + 10 = 9 − 21 + 10 = −2
  • y(4) = 4 2 − 7 · 4 + 10 = 16 − 28 + 10 = −2
  • y(6) = 6 2 − 7 · 6 + 10 = 36 − 42 + 10 = 4

Запишем полученные результаты в таблицу.

x 1 3 4 6
y 4 −2 −2 4

Отметим полученные точки графика на системе координат (зеленые точки).

Теперь мы готовы построить график. На забудьте после построения подписать график функции.

Краткий пример построения параболы

Рассмотрим другой пример построения графика квадратичной функции. Только теперь запишем алгоритм построения коротко без подробностей.

Пусть требуется построить график функции « y = −3x 2 − 6x − 4 ».

    Направление ветвей параболы « a = −3 » — ветви параболы направлены вниз.

Координаты вершины параболы

x =

−b
2a

x =

−(−6)
2 · (−3)

=

6
−6

= −1

y(−1) = (−3) · (−1) 2 − 6 · (−1) − 4 = −3 · 1 + 6 − 4 = −1

(·) A (−1; −1) — вершина параболы.

Точки пересечения с осью « Ox » ( y = 0 ).

−3x 2 − 6x − 4 = 0 |·(−1)

x1;2 =

−6 ± √ 6 2 − 4 · 3 · 4
2 · 1

x1;2 =

−6 ± √ 36 − 48
2

x1;2 =

−6 ± √ −12
2

Ответ: нет действительных корней.

Так как корней нет, значит, график функции не пересекает ось « Ox ».

Вспомогательные точки для: « x = −3 »; « x = −2 »; « x = 0 »; « x = 1 ». Подставим в исходную функцию « y = −3x 2 − 6x − 4 ».

  • y(−3) = −3 · (−3) 2 − 6 · (−3) − 4 = −3 · 9 + 18 − 4 = −27 + 14 = −13
  • y(−2) = −3 · (−2) 2 − 6 · (−2) − 4 = −3 · 4 + 12 − 4 = −12 + 12 − 4 = −4
  • y(0) = −3 · 0 2 − 6 · 0 − 4 = −4
  • y(1) = −3 · 1 2 − 6 · 1 − 4 = −3 −6 − 4 = −13
x −3 −2 1
y −13 −4 −4 −13

Отметим вспомогательные точки. Отмечаем на системе координат только те точки, которые не выходят за масштаб нашей системы координат, то есть точки « (−2; −4) » и « (0; −4) ». Построим и подпишем график функции.

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Чтобы понять то, что здесь будет написано, тебе нужно хорошо знать, что такое квадратичная функция, и с чем ее едят. Если ты считаешь себя профи по части квадратичных функций, добро пожаловать. Но если нет, тебе стоит прочитать тему «Квадратичная функция».

Начнем с небольшой проверки:

  1. Как выглядит квадратичная функция в общем виде (формула)?
  2. Как называется график квадратичной функции?
  3. Как влияет старший коэффициент на график квадратичной функции?
Читайте также:  Как настроить роутер ростелеком через телефон

Если ты сходу смог ответить на эти вопросы, продолжай читать. Если хоть один вопрос вызвал затруднения, перейди по ссылке.

Итак, ты уже умеешь обращаться с квадратичной функцией, анализировать ее график и строить график по точкам.

Ну что же, вот она: .

Давай вкратце вспомним, что делают коэффициенты.

  1. Старший коэффициент отвечает за «крутизну» параболы, или, по-другому, за ее ширину: чем больше , тем парабола у́же (круче), а чем меньше, тем парабола шире (более пологая).
  2. Свободный член – это координата пересечения параболы с осью ординат.
  3. А коэффициент каким-то образом отвечает за смещение параболы от центра координат. Вот об этом сейчас подробнее.

С чего мы всегда начинаем строить параболу? Какая у нее есть отличительная точка?

Это вершина. А как найти координаты вершины, помнишь?

Абсцисса ищется по такой формуле:

Вот так: чем больше , тем левее смещается вершина параболы.

Ординату вершины можно найти, подставив в функцию:

Подставь сам и посчитай. Что получилось?

Если сделать все правильно и максимально упростить полученное выражение, получится:

Получается, что чем больше по модулю, тем выше будет вершина параболы.

Перейдем, наконец, к построению графика.
Самый простой способ – строить параболу, начиная с вершины.

Пример:

Построить график функции .

Решение:

Для начала определим коэффициенты: .

Теперь вычислим координаты вершины:

А теперь вспоминаем: все параболы с одинаковым старшим коэффициентом выглядят одинаково. Значит, если мы построим параболу и переместим ее вершиной в точку , получится нужный нам график:

Остается только один вопрос: как быстро рисовать параболу? Даже если мы рисуем параболу с вершиной в начале координат, все равно приходится строить ее по точкам, а это долго и неудобно. А ведь все параболы выглядят одинаково, может, есть способ ускорить их рисование?

Когда я учился в школе, учительница математики сказала всем вырезать из картона трафарет в форме параболы, чтобы быстро ее чертить. Но с трафаретом везде ходить не получится, да и на экзамен его взять не разрешат. Значит, не будем пользоваться посторонними предметами, а будем искать закономерность.

Рассмотрим простейшую параболу . Построим ее по точкам:

Закономерность здесь такая. Если из вершины сместиться вправо (вдоль оси ) на , и вверх (вдоль оси ) на , то попадем в точку параболы. Дальше: если из этой точки сместиться вправо на и вверх на , снова попадем в точку параболы. Дальше: вправо на и вверх на . Дальше что? Вправо на и вверх на . И так далее: смещаемся на вправо, и на следующее нечетное число вверх. То же самое потом проделываем с левой веткой (ведь парабола симметрична, то есть ее ветви выглядят одинаково):

Отлично, это поможет построить из вершины любую параболу со старшим коэффициентом, равным . Например, нам стало известно, что вершина параболы находится в точке . Построй (самостоятельно, на бумаге) эту параболу.

Должно получиться так:

Теперь соединяем полученные точки:

ОК, ну что же, теперь строить только параболы с ?

Конечно, нет. Сейчас разберемся, что с ними делать, если .

Рассмотрим несколько типичных случаев.

То есть функция выглядит как . Ну что же здесь сложного? Просто переворачиваем параболу рогами вниз, и все.То есть, теперь будем двигаться так:

  • вправо – вниз
  • вправо – вниз
  • вправо – вниз
  • и т.д.

И то же самое, только влево:

Что делать, если, например, ?Все просто: начинаем так же: вправо, но когда дело доходит до «вверх», любое число увеличиваем в раза:

  • вправо – вверх
  • вправо – вверх
  • вправо – вверх
  • и т.д.

Аналогично в случае :

  • вправо – вниз
  • вправо – вниз
  • вправо – вниз
  • и т.д.

В общем случае так:

  • вправо – вверх
  • вправо – вверх
  • вправо – вверх
  • и т.д.

Если , то вместо «вверх» делаем «вниз».

А если ?
Принцип тот же: каждый шаг вправо или влево сопровождается шагом вверх или вниз, равным какому-то нечетному числу, умноженному на . Но отмерять нецелые (дробные) отрезки всегда лень. Поэтому иногда удобнее сделать по-другому: шаг вправо или влево делать не , а . Тогда вверх/вниз придется смещаться на целые , , , , … клеток.

Например: построим график . Будем откладывать:

  • вправо – вниз
  • вправо – вниз
  • вправо – вниз

и затем то же самое влево.

Отлично, параболу рисовать научились, давай теперь потренируемся на настоящих функциях.

Итак, нарисуй графики таких функций:

Читайте также:  Как настроить foobar2000 на максимальное качество звука

Ответы:

Помнишь, что делать, если старший коэффициент меньше ?

Смотрим на знаменатель дроби: он равен . Значит, будем двигаться так:

  • вправо – вверх
  • вправо – вверх
  • вправо – вверх

Ой, а что с этим делать? Как отмерять клетки, если вершина где-то между линиями.

А мы схитрим. Нарисуем сперва параболу, а уже потом переместим ее вершиной в точку . Даже нет, поступим еще хитрее: Нарисуем параболу, а потом переместим оси: – на вниз, а – на вправо:

Этот прием очень удобен в случае любой параболы, запомни его.

Рассмотрим еще один способ записи квадратичной функции: выделение полного квадрата. Этот способ был подробно описан в теме «Квадратные уравнения».

Напомню, что мы можем представить функцию в таком виде:

Что это нам дает?

Дело в том, что число, которое вычитается из в скобках ( ) – это абсцисса вершины параболы, а слагаемое за скобками ( ) – ордината вершины.

Это значит, что, построив параболу , нужно будет просто сместить ось на влево и ось на вниз.

Пример: построим график функции .

Выделим полный квадрат:

Какое число вычитается из в скобках? Это (а не , как можно решить не подумав).

Итак, строим параболу :

Теперь смещаем ось на вниз, то есть на вверх:

А теперь – на влево, то есть на вправо:

Вот и все. Это то же самое, как переместить параболу вершиной из начала координат в точку , только прямые ось двигать намного легче, чем кривую параболу.

Теперь, как обычно, сам:

И не забывай стирать ластиком старые оси!

Я в качестве ответов для проверки напишу тебе ординаты вершин этих парабол:

Если да, то ты молодец! Уметь обращаться с параболой – очень важно и полезно, и здесь мы выяснили, что это совсем не трудно.

ПОСТРОЕНИЕ ГРАФИКА КВАДРАТИЧНОЙ ФУНКЦИИ. КОРОТКО О ГЛАВНОМ

Квадратичная функция – функция вида , где , и ­– любые числа (коэффициенты), – свободный член.

График квадратичной функции – парабола .

  • Если коэффициент , ветви параболы направлены вниз, если 0"> – ветви параболы направлены вверх.
  • Чем больше значение (по модулю), тем у́же становится парабола (ветви становятся более крутыми). И наоборот, чем меньше , тем парабола шире.

Вершина параболы:
, т.е. чем больше displaystyle b , тем левее смещается вершина параболы.
Подставляем в функцию , и получаем:
, т.е. чем displaystyle b больше по модулю , тем выше будет вершина параболы

Свободный член – это координата пересечения параболы с осью ординат.

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ 🙂

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для успешной сдачи ОГЭ или ЕГЭ, для перехода в 10-й класс или поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это – не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю.

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте – нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Я рекомендую использовать для этих целей наш учебник "YouClever" (который ты сейчас читаешь) и решебник и программу подготовки "100gia".

Условия их приобретения изложены здесь. Кликните по этой ссылке, приобретите доступ к YouClever и 100gia и начните готовиться прямо сейчас!

И в заключение.

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

Комментировать
15 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector