No Image

Как построить график колебаний в физике

СОДЕРЖАНИЕ
27 просмотров
16 декабря 2019

Тестирование онлайн

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия – достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

Формулы зависимостей скорости от времени и ускорения от времени можно получить математически, зная зависимость координаты от времени. Аналогично равноускоренному движению, зависимость v(t) – это первая производная x(t). А зависимость a(t) – это вторая производная x(t).

При нахождении производной предполагаем, что переменной (то есть x в математике) является t, остальные физические величины воспринимаем как постоянные.

Идёт приём заявок

Подать заявку

Для учеников 1-11 классов и дошкольников

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Югорский государственный университет» (ЮГУ)

НИЖНЕВАРТОВСКИЙ НЕФТЯНОЙ ТЕХНИКУМ

(филиал) федерального государственного бюджетного образовательного учреждения

высшего профессионального образования «Югорский государственный университет»

(ННТ (филиал) ФГБОУ ВПО «ЮГУ»)

На заседании кафедры ЕиЭД

Зам. директора по учебной работе

ННТ (филиала) ФГБОУ ВПО «ЮГУ»

Методическая разработка занятия

« Построение графиков гармонических колебаний »

Преподаватель: Е.Н. Карсакова

Практическое занятие № 25

«Построение графиков гармонических колебаний »

Формирование навыков построения графиков гармонических колебаний;

Закрепление умений преобразования графиков функций;

Применение знаний к решению нестандартных задач по смежным дисциплинам;

Способствовать развитию алгоритмического и логического мышления;

Развитие точной, информативной речи;

Формирование навыков исследовательской работы;

Развитие творчества, инициативности;

Способствовать эстетическому восприятию графических изображений;

Воспитание умений действовать по заданному алгоритму;

Воспитание аккуратного, точного выполнения геометрических построений;

Тип занятия: формирование умений и навыков

Оборудование и материалы: МД проектор, карты с заданиями, тетради, линейки, карандаши.

Н.В. Богомолов « Практические занятия по математике», 2006г.

А.А. Дадаян « Математика», 2003г.

Читайте также:  Как настроить гугл ассистента для голосового поиска

О.Н. Афанасьева, Я.С. Бродский « Математика для техникумов», 2001г

Объявление темы занятия; постановка целей;

Мотивация познавательной деятельности

Проверка опорных знаний

а) фронтальный опрос

Повторить виды преобразований графиков функций и алгоритмы их выполнения; коррекция пробелов в знаниях

Применение знаний к

изучению нового материала

Формирование умений и навыков построения графиков.

Построение графиков гармонических колебаний.

Закрепление умений и навыков построения графиков функций

Демонстрация лучших работ студентов.

Воспитание эстетического восприятия графических изображений;

Применение знаний к решению нестандартных задач

Показать связь математики с другими науками

Обобщение знаний, умений, навыков; оценка деятельности студентов

Инструктаж по домашнему заданию

Рождённый пустыней, колеблется звук,

Колеблется синий на нитке паук.

Колеблется воздух, прозрачен и чист,

В сияющих звездах колеблется лист.

Сообщение темы занятия; постановка целей; освещение основных этапов.

В технике и в окружающем нас мире часто приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными . Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать все колебательные процессы с единой точки зрения.

Механическими колебаниями называются периодические изменения физической величины, описывающей механическое движение (скорость, перемещение, кинетическая и потенциальная энергия и т. п.).

Если в какой-либо точке среды, в которой близко расположенные атомы или молекулы испытывают силовое воздействие, возбужден процесс механических колебаний, то этот процесс будет с конечной скоростью, зависящей от свойств среды, распространяться от точки к точке. Так возникают механические волны . Примерами такого процесса являются звуковые волны в воздухе.

Как и колебания, волновые процессы различной физической природы (звук, электромагнитные волны, волны на поверхности жидкости и т. д.) имеют много общего. Распространение волн различной физической природы можно описывать с помощью одинаковых математических уравнений и функций. В этом проявляется единство материального мира.

Цель: Мотивация познавательной деятельности

Сегодня мы увидим, как с помощью математических законов и преобразований можно описывать некоторые физические явления. Например,

Что такое гармонические колебания?

Гармонические колебания – это периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса. Графиком гармонического колебания является синусоида или косинусоида , по которой можно определить все характеристики колебательного движения : амплитуду, период, частоту, начальную фазу .

Гармонические колебания играют важную роль в физике, электротехнике. Наша задача – построить графики гармонических колебаний, применив при этом все известные правила преобразований графиков без помощи трудоёмких вычислений и научиться описывать по ним колебательный процесс.

Гармонические колебания подчиняются следующему закону:

А – амплитуда, циклическая (круговая) частота,

начальная фаза колебаний, обычно

Период гармонических колебаний Т можно вычислить по формуле

Для построения графиков гармонических колебаний необходимо иметь чёткое представление о правилах построения графиков функций и их преобразованиях.

3. Проверка знаний учащихся по теме: «Преобразования графиков функций» (15 мин.)

Цель: Повторить основные виды преобразований графиков функций и алгоритмы их выполнения; коррекция пробелов в знаниях.

Задание 1. Сгруппируйте функции по общему признаку:

Рассмотрим подробно правила построения графиков функций с изменяющимся аргументом и меняющейся функцией. (Презентация.)

4. Изучение нового материала (20 мин.) (Презентация.)

Читайте также:  Как найти поиск по фото

Цель: Формирование умений и навыков исследования функции, построения графиков гармонических колебаний.

Задача 1. Построить график гармонических колебаний у = 2 sin (2 x ).

Сразу укажем на типовую ошибку в подобных задачах: осуществляют сдвиг на , а необходимо на , поэтому у = 2 sin 2( x ).

Как построить график такого колебания? Алгоритм построения следующий:

1. у = sinx – исходная функция .

2. у = sin 2 xсжатие в 2 раза вдоль оси Ох.

3. у = 2 sin 2 xрастяжение в 2 раза вдоль оси Оу (рис. 1).

4. у = 2 sin 2( x ) сдвиг на вправо по оси Оx (рис. 2).

При построении данного графика были использованы следующие виды преобразования графиков:

Задача 2. Построить графики функций и определить основные характеристики гармонического колебания:

a ) у = sin б) у = sin 3 x

a). Найдем период функции у = sin :

А=1;

Период колебания Т = 6 значит, достаточно построить график на участке . Поделив этот участок на 4 равных промежутка, получим точки, которые определяют поведение графика: (рис. 3).

А=1;

Построим график на участке длиной в период . Поделим его на 4 равных промежутка и получим точки (рис. 4).

5. Построение графиков гармонических колебаний . Самостоятельная работа (30 мин).

Опыт – дитя мысли, мысль – дитя действий

Цель: Закрепление умений и навыков построения графиков функций

Построить графики гармонических колебаний:

y = cos

y = – sin ( x+ ).

Критерии оценки деятельности учащихся:

(1-) – удовлетворительно; (1-2) – хорошо; (1-3) – отлично.

6. Демонстрация лучших работ студентов (3 мин).

Вдохновение нужно в математике, как и в поэзии.

Цель: Воспитание эстетического восприятия графических изображений;

7. Применение знаний к решению нестандартных задач (6 мин.)

Цель: Показать связь математики с другими науками;

Тело движется по закону у = cos . По графику (рис.5)функции установите:

Амплитуду колебаний А ;

Частоту колебаний

Период колебаний ;

Начальную фазу

Ответ : А=1;

Дорогу осилит идущий, а математику – мыслящий.

Выполнение поставленных целей;

Приобретение навыков исследовательской работы;

Применение знаний к решению нестандартных задач;

Мы познакомились с графиками гармонических колебаний. Очевидно, что при их построении синусоида или косинусоида подверглись различным преобразованиям: сжатию, растяжению, сдвигу. Овладение этими правилами поможет при изучении других функций на последующих занятиях.

9. Домашнее задание (3 мин).

Построить график функции у = 3 cos (2 x + ) и определить основные характеристики колебательного движения.

10. Это интересно!

Биение сердца также относится к колебательному процессу. В течение минуты оно выбрасывает в аорту около 4 л крови. Сердце человека в среднем сокращается 100 тысяч раз в сутки. За 70 лет жизни оно сокращается 2 миллиарда 600 миллионов раз и перекачивает при этом 250 миллионов литров крови. Синусоидальные изменения ритмов сердца отражает кардиограф.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Введение

Гармонические колебания играют важную роль в физике. Наша задача – на частных случаях построить графики гармонических колебаний и повторить все известные нам правила преобразований графиков.

Закон гармонических колебаний

Гармонические колебания подчиняются следующему закону:

амплитуда,

циклическая (круговая) частота,

Возьмем частный случай гармонических колебаний и применим все известные нам правила преобразования графиков.

Решение задач на преобразование графиков

Задача 1. Построить график гармонических колебаний

Сразу укажем на типовую ошибку в подобных задачах: осуществляют сдвиг на

Как построить график такого колебания? Этапы построения следующие:

1. исходная функция.

2. сжатие в 2 раза к оси y.

3. растяжение в 2 раза от оси x(рис. 1).

4.

При построении данного графика были использованы основные преобразования графиков:

1.

2.

3.

Задача 2. Построить графики функций:

a)

b)

a) Найдем период функции

Период

b) Найдем период функции

Построим график на участке длиной в период

Проверить правильность построения графиков можно путем нахождения значений функции в отдельных точках.

Мы построили графики функций, используя периодичность. Можно было также построить одну полуволну и отобразить её на всю область определения.

Задача 3. Построить графики функций:

a)

b)

a)

Косинус – четная функция, поэтому мы можем построить график на участке равном

b)

Косинус – четная функция, строим график на участке

Заключение

Мы рассмотрели график гармонических колебаний. Мы видим, что для того, чтобы построить график гармонического колебания, необходимо исходную кривую подвергнуть известным нам преобразованиям: сжатию, растяжению, сдвигу. Овладение этими правилами пригодится и при построении других графиков.

Список литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. . Г. Мордковича. –М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

Дополнительные веб-ресурсы

2. Интернет-портал Problems.ru (Источник).

3. Образовательный портал для подготовки к экзаменам (Источник).

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Комментировать
27 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector