No Image

Как построить годограф михайлова

СОДЕРЖАНИЕ
202 просмотров
16 декабря 2019

Читайте также:

  1. III. Практическое занятие № 1
  2. III. Практическое занятие № 4
  3. IV. ОБРАБОТКА РЕЗУЛЬТАТОВ ГРУППОВОГО И ИНДИВИДУАЛЬНОГО ОБСЛЕДОВАНИЯ, ЗАПОЛНЕНИЕ ХАРАКТЕРИСТИКИ, ПОСТРОЕНИЕ ИНДИВИДУАЛЬНОГО ПРОФИЛЯ ГОТОВНОСТИ
  4. Венгер А.Л. Психологическое консультирование и диагностика. Практическое руководство. Часть 2. – М.: Генезис, 2001. – 128с.
  5. Вопрос 41 Практическое применение электролизных процессов в современной промышленности.
  6. Вопрос 4: Построение иерархической структуры работ
  7. Выбор аппаратов защиты и построение карты селективности
  8. Вычисление функции, выполнение расчетов. Построение графиков
  9. Г. 2 Построение пояснительной записки
  10. ГРУППОВОЕ ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 2. КОНЦЕПТУАЛЬНЫЕ ОСНОВЫ ДЕЛОПРОИЗВОДСТВА И ДОКУМЕНТООБОРОТА
  11. Занятие 1. Практическое занятие
  12. Измерений. Построение графиков радиального прироста.

Для примера рассмотрим систему 4 ой степени:

.

Чтобы найти точки пересечения годографа с осями координат, необходимо приравнять нулю вещественную и мнимую части и найти частоты, при которых они равны нулю.

Построение годографа ведется в следующем порядке:

1. В характеристическом уравнении замкнутой системы производим замену на :

.

2. Из уравнения выделяем вещественную и мнимую части:

– уравнение вещественной части – ;

– уравнение мнимой части – .

3. Приравняем нулю мнимую часть и находим частоты, при которых годограф пересекается с вещественной осью (точки 1 и 3):

4. Полученные значения частоты подставим в уравнение вещественной части, получаем точки 1 и 3:

5. Приравняем нулю уравнение вещественной части, получаем частоты, при которых годограф пересекается с мнимой осью:

Введем новую переменную и получим квадратное уравнение:

Решим квадратное уравнение:

Найдем и (только положительные значения):

.

6. Полученные значения частоты подставим в уравнение мнимой части и находим точки 2 и 4:

.

7. Задаются промежуточными частотами и частотой , для которых находят значения вещественной и мнимой части:

8. Все расчеты сводятся в таблицу:

0.23 0.46 0.68 0.89 1.2 1.51 1.6
0.74 -0.88 -1.71 -2.1 1,31
0.86 1.35 1.15 -3.84 -11.17 -14,08

9. По данным таблицы строится годограф (рисунок 1).

10. Вывод: Система устойчива, т.к. вектор годографа Михайлова начинает свое движение с положительной вещественной полуоси, вращается против часовой стрелки, нигде не обращается в ноль и обходит последовательно 4 квадранта комплексной плоскости.

Дата добавления: 2014-12-08 ; Просмотров: 4440 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Критерий устойчивости Михайлова относится к частотным критериям и используется для исследования устойчивости замкнутых систем. Рассмотрим замкнутую систему управления структурная схема которой имеет вид

Пусть передаточная функция разомкнутой системы равна

и пусть – степень полинома , – степень полинома .

Передаточная функция замкнутой системы

Полином – имеем степень -степень полинома

Составим характеристический полином замкнутой системы

Если подставим в , то получим комплексное число

В последнем равенстве выделим действительную и мнимую части комплексного числа:

На плоскости и комплексное число изображается вектором (см. рис. 2). При из изменении частоты от 0 до вектор изменяется по величине и направлению. Конец вектора в комплексной плоскости описывает некоторую кривую, которая называется годографом Михайлова.

Формулировка критерия Михайлова.

Для того, чтобы замкнутая система автоматического управления была устойчива, необходимо и достаточно чтобы годограф Михайлова при изменении частоты от 0 до , начинался при на вещественной положительной полуоси, обходил последовательно квадрантов координатной плоскости против часовой стрелки, где – порядок характеристического полинома.

Заметим, что для устойчивых систем автоматического управления годограф Михайлова начинается при на вещественной положительной полуоси, поскольку, поскольку все коэффициенты характеристического полинома положительны и .

Кроме того, для устойчивых систем фаза с ростом частоты должна возрастать монотонно, т.е. вектор должен поворачиваться только против стрелки, поскольку с ростом частоты монотонно возрастают имеющие одинаковые знаки фазы элементарных векторов ,являющиеся слагаемыми вектора .

Кривая Михайлова для устойчивых систем всегда плавную спиралевидную форму, причём конец её () уходит в бесконечность в том квадранте координатной плоскости, номер которого равен степени характеристического полинома.

Типовые кривые Михайлова для устойчивых систем, имеющих характеристический полином степеней , , , и представлены на рисунке 3 ( – во всех случаях приняты одинаковыми).

Признаком неустойчивости системы является нарушение числа и последовательности пройденных кривой Михайлова квадрантов координатной плоскости, вследствие чего угол поворота вектора оказывается меньшим, чем

Читайте также:  Как выключить рекламу в телефоне андроид

Примеры годографов Михайлова для неустойчивых систем:

Другая формулировка критерий устойчивости Михайлова.

Система автоматического управления устойчива тогда и только тогда, когда уравнения и имеют все действительные и перемежающиеся корни, причём общее число этих корней равно порядку характеристического уравнения и при выполняется неравенства и .

Это условие устойчивости системы получило также название условие перемежаемости корней.

Правило исследования устойчивости систем автоматического управления с помощью критерия Михайлова. Для исследования устойчивости линейных систем автоматического управления с помощью критерия Михайлова надо:

Преобразовать структурную схему исследуемой системы к расчётной структурной схеме

и определить передаточную функцию разомкнутой системы .

По передаточной функции разомкнутой системы получить передаточную функцию замкнутой системы

и вычислить характеристический полином замкнутой системы

3. В характеристическом полиноме подставить

и выделить в комплексном числе действительную и мнимую части

Используя полученные выражения для и строим годограф Михайлова, изменяя значения частоты от 0 до .

5. Используя критерий Михайлова, по построенному годографу определяем устойчивость системы управления.

Пример. С помощью критерия Михайлова определить устойчивость замкнутой системы с передаточной функцией

Решение. Характеристический полином замкнутой системы:

Годограф Михайлова.

Условие перемежаемости корней:

Определение границ устойчивости.

Характеристический полином замкнутой системы автоматического управления

Система автоматического управления будет находиться на границе устойчивости, если характеристический полином замкнутой системы имеет пару чисто мнимых корней , , а остальные корня имеют отрицательные действительные части.

Подставим в характеристический полином и выделим действительную и мнимую части комплексного числа :

(т.к. , то считаем, что это корень характеристического уравнения).

Если система находится на границе устойчивости, то годограф Михайлова для системы проходит через начало координат (см. рис. 7).

Решение системы уравнений , позволяет установить взаимосвязь параметров замкнутой системы и частоты гармонических колебаний , для случая, когда система будет находиться на границе устойчивости. Если при изменении параметров годограф пойдёт так, как показано на рисунке (кривая 1), то система будет устойчивой, если так как на кривой 2 – то система будет неустойчивой.

Пример. С помощью критерия устойчивости Михайлова определить границу устойчивости для системы расчётная структурная схема которой показана на рисунке. устойчивость автоматический линейный постоянство

Решение. Передаточная функция замкнутой системы имеет вид:

Полагая характеристическое уравнение приобретает вид:

Решение этой системы даёт уравнение границы устойчивости.

Уравнение границы устойчивости

Функция двух переменных и – параметров системы. Изменим значение коэффициента усиления на , т.е. , а значение оставим без изменения. Тогда для имеем

то в зависимости от знака годограф может занять одно из 2-х положений

Если , то годограф Михайлова охватывает начало координат и система устойчива. Если , то годограф Михайлова не охватывает начало координат, критерий Михайлова не выполняется и система устойчива. Это значит, что для обеспечения устойчивости системы коэффициент усиления системы должен удовлетворять неравенству . Таким образом, система устойчива, если

построение годографов михайлова при помощи пакета «mathcad»

Цель работы заключается в необходимости получения простого и наглядного инструмента для решения задач расчёта устойчивости систем автоматического управления, что является обязательным условием работоспособности любого промышленного робота и манипулятора.

1 Понятие об устойчивости системы

Как видно из цели исследования, необходимым условием работоспособности системы автоматического управления (САУ), является её устойчивость. Под устойчивостью принято понимать свойство системы восстанавливать состояние равновесия, из которого она была выведена под влиянием возмущающих факторов после прекращения их воздействия [1]. Если система не способна возвращаться в состояние равновесия, которое было нарушено в процессе работы, то для практического использования она непригодна.

На практике для определения устойчивости САУ используют критерии устойчивости, то есть правила, с помощью которых можно определить устойчива ли система, не прибегая к решению дифференциальных уравнений. Одним из таких критериев, есть критерий устойчивости Михайлова.

2 Критерий устойчивости Михайлова

Данный критерий основан на связи характера переходного процесса системы с амплитудой и фазой вынужденных колебаний, устанавливающихся в системе при синусоидальном воздействии. Анализ устойчивости системы этим методом сводится к построению по характеристическому многочлену замкнутой системы (знаменатель передаточной функции), комплексной частотной функции (характеристического вектора):

(1)

где и – соответственно вещественная и мнимая части знаменателя передаточной функции, по виду которой можно судить об устойчивости системы.

Если задаваться различными значениями частоты и откладывать по горизонтальной, а по вертикальной осям декартовой системы координат, то будет получена кривая, называемая годографом характеристического вектора или годографом Михайлова.

В таком случае, критерий устойчивости Михайлова может быть сформулирован следующим образом: замкнутая САУ устойчива, если комплексная частотная функция , начинаясь на действительной положительной оси, при изменении частоты от 0 до ∞ огибает против часовой стрелки начало координат, проходя последовательно n квадрантов, где n – порядок характеристического уравнения системы, т. е.

(2)

Рисунок 1 – Амплитудно-фазовые характеристики (годографы) критерия Михайлова: а) – устойчивой системы; б) – неустойчивой системы (1, 2) и системы на границе устойчивости (3)

На рис. 1 показаны примеры перемещения годографов Михайлова для различных систем с изменяющимся порядком n характеристического уравнения.

3 Алгоритм построения годографа Михайлова

Рассмотрим последовательность расчёта критерия устойчивости Михайлова и сформируем алгоритм построения годографа, используя математический пакет «MathCad», на приведенных ниже примерах.

Пример 1. Используя критерий Михайлова, определим устойчивость системы автоматического управления электроприводом манипулятора промышленного робота (МПР). Структурная схема САУ электроприводом МПР изображена на рис. 2.

Рисунок 2 – Структурная схема САУ электроприводом МПР

Передаточная функция данной САУ имеет следующее выражение [2]:

(3)

(4)

где kу – коэффициент усиления усилителя, kм – коэффициент пропорциональности частоты вращения двигателя величине напряжения на якоре, Tу – электромагнитная постоянная времени усилителя, Tм – электромеханическая постоянная времени двигателя с учётом инерции нагрузки (по своим динамическим характеристикам двигатель представляет собой передаточную функцию последовательно соединённых инерционного и интегрирующего звеньев), kдс – коэффициент пропорциональности между входной и выходной величинами датчика скорости, K – коэффициент усиления главной цепи: .

Подставим численные значения в выражение передаточной функции:

K = 100 град / (В∙с); kдс = 0,01 В / (град∙с); Tу = 0,01 с; Tм = 0,1с.

(5)

Далее запишем характеристический многочлен замкнутой системы заменив s на :

(6)

С помощью (1) выделим вещественную и мнимую части и подставим численные значения в полученную комплексную частотную функцию:

(7)

Имея данные в виде (7), перейдём непосредственно к использованию математического пакета «MathCad».

Для этого в верхнем меню выберем «Новый…» – «Пустой документ», в котором будем формировать программу построения годографа Михайлова, используя нижеприведенный алгоритм.

Шаг 1. Задать разрешение годографа диапазоном значений индекса i. Например:

(8)

Шаг 2. Определить исследуемый диапазон и шаг частоты , используя значения индекса i (обычно, для практических расчётов, максимальная величина частоты не превышает значения 1000, в нашем же примере – достаточно принять с частотным шагом 0,1):

(9)

Шаг 3. Полученные вещественную и мнимую части характеристического уравнения, зададим численными значениями (в данном случае используя (7)) в виде:

(10)

и

Рисунок 3 – Массивы значений , и , рассчитанные в «MathCad»

(11)

Шаг 4. В результате вычислений (9), (10) и (11), получаются массивы значений частоты , а также вещественной и мнимой частей (рис. 3).

Шаг 5. Далее имея рассчитанные массивы значений и , переходим к построению годографа Михайлова, используя встроенную функцию «MathCad» – «Инструменты графиков», выбрать «Декартов график». Здесь необходимо определить идентификаторы осей (в данном случае ось абсцисс соответствует вещественной части , а ординат – мнимой части ) и параметры графика в подменю «Формат…». В результате получим график комплексной частотной функции, приведенный на рис. 4.

Рисунок 4 – Годограф Михайлова для САУ электроприводом МПР

Используя функцию «Трассировка…» (пунктирные линии на рис. 4), можно определить, в соответствующем трассировке окне, точные значения годографа в любой точке рассчитанных массивов.

Таким образом, по рассчитанным данным, построенный годограф Михайлова, начинаясь на действительной положительной полуоси, огибает против часовой стрелки начало координат, проходя последовательно три квадранта, что соответствует порядку характеристического уравнения. Следовательно, данная САУ электроприводом МПР – устойчива.

В соответствии с изложенным алгоритмом, рассмотрим ещё один пример расчёта критерия устойчивости Михайлова и построения комплексной частотной функции.

Пример 2. На современных автомобильных заводах широко применяются большие сварочные роботы (рис. 5). Наконечник сварочного узла (НСУ) подводится к различным местам кузова автомобиля, быстро и точно совершает необходимые действия. Требуется определить устойчивость по критерию Михайлова САУ позиционированием НСУ, структурная схема которой изображена на рис. 6.

Характеристическое уравнение данной САУ будет иметь вид [1]:

(12)

где K – варьируемый коэффициент усиления системы, a – определённая положительная константа.

Подставим в (12) численные значения: K = 40; a = 0,525.

(13)

Далее путём замены s на , получим функцию Михайлова:

(14)

Перед тем, как выделить вещественную и мнимую части, запишем (1) в несколько усовершенствованном виде, с целью универсального использования для различных порядков n:

(15)

где с – соответствующий постоянный коэффициент при определённом порядке частоты .

Применяя (15) к нашей задаче, получим:

(16)

(17)

Имея данные в виде (16) и (17), приступим к вышеупомянутому алгоритму построения годографа Михайлова с помощью «MathCad».

Шаг 1. Зададим диапазон индекса i:

(18)

Шаг 2. Определим исследуемый диапазон и шаг частоты (примем с частотным шагом 0,1):

(19)

Шаг 3. Введём вещественную (16) и мнимую (17) части характеристического уравнения:

(20)

(21)

Шаг 4. При выполнении вычислений (19), (20) и (21), формируются массивы значений частоты , вещественной и мнимой частей (рис. 7).

Шаг 5. Имея рассчитанные массивы значений и , подобно предыдущему примеру, построим частотную функцию Михайлова. После определения параметров графика, получим годограф, приведенный на рис. 8.

Рисунок 7 – Массивы значений , и , рассчитанные в «MathCad»

Рисунок 8 – Годограф Михайлова для САУ позиционированием НСУ

На основе анализа полученных данных, можно сделать вывод, что построенный годограф Михайлова, начинаясь на вещественной положительной оси, огибает в положительном направлении начало координат, проходя последовательно четыре квадранта, что соответствует порядку характеристического уравнения. Значит, данная САУ позиционированием НСУ – устойчива.

Что же касается анализа последних публикаций [2] и сравнения с лучшими аналогами [3], то необходимо отметить факт отсутствия подобной функции (построение годографа Михайлова) в пакете «MATLAB» [1, 4], который, обычно, используется для моделирования различных САУ, что, собственно, и послужило главной причиной создания данного алгоритма.

Перспективы развития данной работы заключаются в создании универсального инструмента для анализа комплексной частотной функции Михайлова, способного выполнить все вычисления уже на этапе задания характеристического уравнения, тем самым полностью автоматизируя этот процесс.

Таким образом, для достижения цели, в ходе написания исследования, была решена главная проблема – получение простого и наглядного инструмента для решения задач расчёта устойчивости САУ, что является обязательным условием работоспособности любого промышленного робота и манипулятора. Также были выполнены следующие задачи: сформирован алгоритм построения комплексной частотной функции Михайлова при помощи математического пакета «MathCad», выполнен анализ устойчивости САУ МПР по данному критерию, кроме того, – приведены практические примеры реализации данного алгоритма.

Список использованной литературы

1. Дорф Р. Современные системы управления / Р. Дорф, Р. Бишоп. – М.: Лаборатория Базовых Знаний, 2002. – 832 с.

2. Юревич Е.И. Основы робототехники 2-е издание / Е.И. Юревич. – С-Пб.: БХВ-Петербург, 2005. – 416 с.

3. Yim Y. Modular Robots / Y. Yim, Y. Zhang, D. Daff // IEEE SPECTRUM. – 2002. – # 2. – P. 30 – 34.

4. Олссон Г. Цифровые системы автоматизации и управления / Г. Олссон, Дж. Пиани. – С-Пб.: Невский Диалект, 2001. – 557 с.

Название: Построение годографов Михайлова при помощи пакета MATHCAD
Раздел: Рефераты по коммуникации и связи
Тип: контрольная работа Добавлен 02:13:03 18 декабря 2010 Похожие работы
Просмотров: 811 Комментариев: 15 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать
Комментировать
202 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector